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Chapter 1

Collected Articles on
Inequalities

After reading the previous chapters, you should have gained a lot of insight into in-
equalities. The world of inequalities is really uniquely wonderful and interesting to
explore. In this chapter, we will examine inequalities in a more general and larger
context with the help of the mathematical techniques and methods developed in the
previous chapter.

This chapter contains 19 sections, organized into 8 articles. Many interesting mat-
ters will be discussed here, such as some generalizations of Schur inequality, some
estimations of familiar expressions, some strange kinds of inequalities, some im-
provements of the classical mixing variable method and some applications of Kara-
mata inequality. We wish to receive more comments and contributions from you, the
readers.
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Article 1

Generalization of Schur Inequality

1.1 Generalized Schur Inequality for Three Numbers

We will be talking about Schur inequality in these pages. Just Schur inequality? And
is it really necessary to review it now? Yes, certainly! But instead of using Schur in-
equality in ”brute force” solutions (eg. solutions that use long, complicated expand-
ing), we will discover a very simple generalization of Schur inequality. An eight-
grade student can easily understand this matter; however, its wide and effective in-
fluence may leave you surprised.

Theorem 1 (Generalized Schur Inequality). Let a, b, c, x, y, z be six non-negative real
numbers such that the sequences (a, b, c) and (x, y, z) are monotone, then

x(a− b)(a− c) + y(b− a)(b− c) + z(c− a)(c− b) ≥ 0.

PROOF. WLOG, assume that a ≥ b ≥ c. Consider the following cases

(i). x ≥ y ≥ z. Then, we have (c− a)(c− b) ≥ 0, so z(c− a)(c− b) ≥ 0. Moreover,

x(a− c)− y(b− c) ≥ x(b− c)− y(b− c) = (x− y)(b− c) ≥ 0

⇒ x(a− b)(a− c) + y(b− a)(b− c) ≥ 0.

Summing up these relations, we have the desired result.

(i). x ≤ y ≤ z. We have (a− b)(a− c) ≥ 0, so x(a− b)(a− c) ≥ 0. Moreover,

z(a− c)− y(a− b) ≥ z(a− b)− y(a− b) = (z − y)(a− b) ≥ 0

⇒ z(c− a)(c− b) + y(b− a)(b− c) ≥ 0.

Summing up the inequalities above, we have the desired result.

Comment. Denote S =
∑
cyc

x(a − b)(a − c). By the same reasoning as above, we can

prove that S ≥ 0 if at least one of the following stronger conditions is fulfilled

1. If a ≥ b ≥ c ≥ 0, x ≥ y ≥ 0 and z ≥ 0.
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2. If a ≥ b ≥ c ≥ 0, y ≥ z ≥ 0 and x ≥ 0.

3. If a ≥ b ≥ c ≥ 0 and ax ≥ by ≥ 0 or by ≥ cz ≥ 0.

(1) and (2) are quite obvious. To prove (3), just notice that if a, b, c > 0 then

1

abc
(x(a− b)(a− c) + y(b− a)(b− c) + z(c− a)(c− b))

= ax

(
1

a
− 1

b

)(
1

a
− 1

c

)
+ by

(
1

b
− 1

a

)(
1

b
− 1

c

)
+ cz

(
1

c
− 1

a

)(
1

c
− 1

b

)
,

and the problem turns to a normal form of the generalized Schur inequality shown
above.

∇

This was such an easy proof! But you need to know that this simple theorem
always provides unexpectedly simple solutions to a lot of difficult problems. That
makes the difference, not its simple solution. Let’s see some examples and you will
understand why many inequality solvers like to use the generalized Schur inequal-
ity in their proofs.

Example 1.1.1. Let a, b, c be three positive real numbers. Prove that

a+ b+ c ≤ a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
.

(Ho Joo Lee)

SOLUTION. According to the identity

a2 + bc

b+ c
− a =

(a− b)(a− c)
b+ c

,

we can change our inequality into the form

x(a− b)(a− c) + y(b− a)(b− c) + z(c− a)(c− b) ≥ 0,

in which
x =

1

b+ c
; y =

1

c+ a
; z =

1

a+ b
.

WLOG, assume that a ≥ b ≥ c, then clearly x ≤ y ≤ z. The conclusion follows from
the generalized Schur inequality instantly.

∇

Example 1.1.2. Let a, b, c be positive real numbers with sum 3. Prove that

1

a
+

1

b
+

1

c
≥ 3

2a2 + bc
+

3

2b2 + ac
+

3

2c2 + ab
.
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(Pham Kim Hung)

SOLUTION. Rewrite the inequality into the following from

∑
cyc

(
1

a
−
∑
cyc

a+ b+ c

2a2 + bc

)
≥ 0 ⇔

∑
cyc

(a− b)(a− c)
2a3 + abc

≥ 0.

Notice that if a ≥ b ≥ c then

1

2a3 + abc
≤ 1

2b3 + abc
≤ 1

2c3 + abc
.

The conclusion follows from the generalized Schur inequality.

∇

Example 1.1.3. Let a, b, c be the side lengths of a triangle. Prove that
√
a+ b− c

√
a+
√
b−
√
c

+

√
b+ c− a√

b+
√
c−
√
a

+

√
c+ a− b

√
c+
√
a−
√
b
≤ 3.

(Italian Winter Camp 2007)

SOLUTION. By a simple observation, the inequality is equivalent to

∑
cyc

(
1−

√
a+ b− c

√
a+
√
b−
√
c

)
≥ 0 ⇔

∑
cyc

√
a+
√
b−
√
c−
√
a+ b− c

√
a+
√
b−
√
c

≥ 0

⇔
∑
cyc

√
ab−

√
c(a+ b− c)(√

a+
√
b−
√
c
)(√

a+
√
b+
√
c+
√
a+ b− c

) ≥ 0

⇔
∑
cyc

(c− a)(c− b)
Sc

≥ 0,

where

Sc =
(√

a+
√
b−
√
c
)(√

a+
√
b+
√
c+
√
a+ b− c

)(√
ab+

√
c(a+ b− c)

)
,

and Sa, Sb are determined similarly. It’s easy to check that if b ≥ c then

√
a+
√
b−
√
c ≥
√
c+
√
a−
√
b ;

√
a+
√
b+
√
c+
√
a+ b− c ≥

√
a+
√
b+
√
c+
√
c+ a− b ;

√
ab+

√
c(a+ b− c) ≥

√
ca+

√
b(c+ a− b) ;

Therefore Sc ≥ Sb. The proof is finished by the generalized Schur inequality.

∇
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Example 1.1.4. Let x, y, z be positive real numbers such that
√
x +
√
y +
√
z = 1. Prove

that
x2 + yz

x
√

2(y + z)
+

y2 + zx

y
√

2(z + x)
+

z2 + xy

z
√

2(x+ y)
≥ 1.

(APMO 2007)

SOLUTION. We use the following simple transformation∑
cyc

x2 + yz

x
√

2(y + z)
=
∑
cyc

(x− y)(x− z) + x(y + z)

x
√

2(y + z)

=
∑
cyc

(x− y)(x− z)
x
√

2(y + z)
+
∑
cyc

√
y + z

2
.

By the generalized Schur inequality, we get that∑
cyc

(x− y)(x− z)
x
√

2(y + z)
≥ 0.

By AM-GM inequality, the remaining work is obvious

∑
cyc

√
y + z

2
≥
∑
cyc

1

2

(√
y +
√
z
)

=
∑
cyc

√
x = 1.

This ends the proof. Equality holds for x = y = z =
1

9
.

∇

Example 1.1.5. Let a, b, c be positive real numbers. Prove that

a2 + 2bc

(b+ c)2
+
b2 + 2ac

(a+ c)2
+
c2 + 2ab

(a+ b)2
≥ 9

4
.

SOLUTION. The inequality can be rewritten as∑
cyc

(a− b)(a− c) + (ab+ bc+ ca)

(b+ c)2
≥ 9

4
,

or equivalently A+B ≥ 9

4
, where

A =
(a− b)(a− c)

(b+ c)2
; B =

∑ ab+ bc+ ca

(b+ c)2
;

By the generalized Schur inequality, we deduce that A ≥ 0. Moreover, B ≥ 9

4
by

Iran 96 inequality. Therefore, we are done and the equality holds for a = b = c.

∇
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Example 1.1.6. Let a, b, c be positive real numbers. Prove that√
a3 + abc

(b+ c)3
+

√
b3 + abc

(c+ a)3
+

√
c3 + abc

(a+ b)3
≥ a

b+ c
+

b

c+ a
+

c

a+ b
.

(Nguyen Van Thach)

SOLUTION. Notice that√
a3 + abc

(b+ c)3
− a

b+ c
=

√
a

b+ c
·

(√
a2 + bc

b+ c
−
√
a

)

=

√
a(a− b)(a− c)

(b+ c)
√
b+ c

(√
a2 + bc+

√
a(b+ c)

) .
The inequality can be rewritten as

∑
cyc

Sa(a− b)(a− c) ≥ 0 with

Sa =

√
a

(b+ c)
√
b+ c

(√
a2 + bc+

√
a(b+ c)

) ;

Sb =

√
b

(c+ a)
√
c+ a

(√
c2 + ab+

√
c(a+ b)

) ;

Sc =

√
c

(a+ b)
√
a+ b

(√
c2 + ab+

√
c(a+ b)

) .

Now suppose that a ≥ b ≥ c, then it’s easy to get that

(b+ c)
√
a2 + bc ≤ (a+ c)

√
b2 + ac ;

(b+ c)
√
a(b+ c) ≤ (a+ c)

√
b(a+ c) .

Thus (b+c)
(√

a2 + bc+
√
a(b+ c)

)
≥ (c+a)

(√
c2 + ab+

√
c(a+ b)

)
and therefore

we have Sa ≥ Sb. We can conclude that∑
cyc

Sa(a− b)(a− c) ≥ Sa(a− b)(a− c) + Sb(b− a)(b− c)

≥ (Sa − Sb)(a− b)(b− c) ≥ 0.

This is the end of the proof. The equality holds for a = b = c.

∇

Example 1.1.7. Let a, b, c be non-negative real numbers. Prove that

a2

(2a+ b)(2a+ c)
+

b2

(2b+ c)(2b+ a)
+

c2

(2c+ a)(2c+ b)
≤ 1

3
.
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SOLUTION. If c = 0, the problem is obvious. Suppose that a, b, c > 0, then we have

1− 3
∑
cyc

a2

(2a+ b)(2a+ c)
=
∑
cyc

(
a

a+ b+ c
− a2

(2a+ b)(2a+ c)

)
=
∑
cyc

a(a− b)(a− c)
(a+ b+ c)(2a+ b)(2a+ c)

=
∑
cyc

a2
(
1
a −

1
b

) (
1
a −

1
c

)
(a+ b+ c)(2a+ b)(2a+ c)

.

By the generalized Schur inequality, it suffices to prove that if a ≥ b then

a2

(2a+ b)(2a+ c)
≥ b2

(2b+ a)(2b+ c)
.

But the previous inequality is equivalent to

(a− b)
(
2ab(a+ b+ c) + c(a2 + ab+ b2)

)
≥ 0,

which is obvious. The equality holds for a = b = c and a = b, c = 0 up to permuta-
tion.

∇

Example 1.1.8. Let a, b, c be positive real numbers. Prove that

1

a2 + 2bc
+

1

b2 + 2ca
+

1

c2 + 2ab
≤
(

a+ b+ c

ab+ bc+ ca

)2

.

(Pham Huu Duc)

SOLUTION. We have∑
cyc

ab+ bc+ ca

a2 + 2bc
− (a+ b+ c)2

ab+ bc+ ca
=
∑
cyc

(
ab+ bc+ ca

a2 + 2bc
− 1

)
+
∑
cyc

(c− a)(c− b)
ab+ bc+ ca

=
∑
cyc

(a− b)(a− c)
(

1

a2 + 2bc
+

1

ab+ bc+ ca

)
.

WLOG, assume that a ≥ b ≥ c. By the generalized Schur inequality, it suffices to
prove that

a

(
1

a2 + 2bc
+

1

ab+ bc+ ca

)
≥ b

(
1

b2 + 2ca
+

1

ab+ bc+ ca

)
.

Indeed, the difference between the left-hand side and the right-hand side is

a− b
ab+ bc+ ca

− (a− b)(2ca+ 2cb− ab)
(a2 + 2bc)(b2 + 2ca)
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=
(a− b)

(
2a2b2 + c(a3 + b3)− 2a2c2 − 2b2c2 + c(a− b)2(a+ b)

)
(ab+ bc+ ca)(a2 + 2bc)(b2 + 2ca)

≥ 0.

We just got the desired result. The equality holds for a = b = c.

∇

Example 1.1.9. Let a, b, c be non-negative real numbers such that ab+ bc+ ca = 1. Prove
that

1 + b2c2

(b+ c)2
+

1 + c2a2

(c+ a)2
+

1 + a2b2

(a+ b)2
≥ 5

2
.

(Mathlinks Contest)

SOLUTION. First we have that∑
cyc

1 + b2c2

(b+ c)2
=
∑
cyc

(ab+ bc+ ca)2 + b2c2

(b+ c)2
=
∑
cyc

a2 + 2
∑
cyc

abc

b+ c
+

2b2c2

(b+ c)2
.

Therefore, our inequality can be rewritten as

2

(∑
cyc

a2 −
∑
cyc

ab

)
+
∑
cyc

a

(
4bc

b+ c
− (b+ c)

)
+
∑
cyc

(
4b2c2

(b+ c)2
− bc

)
≥ 0.

The left hand expression of the previous inequality is

∑
cyc

(b2 + bc+ c2 − ab− ac)(b− c)2

(b+ c)2
=
∑
cyc

(b− c)
(
b3 − c3 − a(b2 − c2)

)
(b+ c)2

=
∑
cyc

(b− c)
(
b2(b− a)− c2(c− a)

)
(b+ c)2

=
∑
cyc

(b− c)(b− a)

(
b2

(b+ c)2
+

b2

(b+ a)2

)
,

and the proof is completed by the generalized Schur inequality because if b ≥ c then

b2

(b+ c)2
+

b2

(b+ a)2
≥ c2

(c+ a)2
+

c2

c+ b)2
.

∇
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1.2 A Generalization of Schur Inequality for n Num-
bers

If Schur inequality for three variables and its generalized form have been discussed
thoroughly in the previous section, we now go ahead to the generalization of Schur
inequality for n variables. As a matter of fact, we want an estimation of

Fn = a1(a1−a2)...(a1−an)+a2(a2−a1)(a2−a3)...(a2−an)+...+an(an−a1)...(an−an−1).

The first question is if the inequality Fn ≥ 0 holds. Unfortunately, it is not always
true (it is only true for n = 3). Furthermore, the general inequality

ak1(a1−a2)...(a1−an)+ak2(a2−a1)(a2−a3)...(a2−an)+...+akn(an−a1)...(an−an−1) ≥ 0

is also false for all n ≥ 4 and k ≥ 0. To find a counter-example, we have to check the
case n = 4 only and notice that if n > 4, we can choose ak = 0 ∀k ≥ 4. For n = 4,
consider the inequality

ak(a−b)(a−c)(a−d)+bk(b−a)(b−c)(b−d)+ck(c−a)(c−b)(c−d)+dk(d−a)(d−b)(d−c) ≥ 0.

Just choose a = b = c, the inequality becomes dk(d − a)3 ≥ 0, which is clearly false
(when d ≤ a).

Our work now is to find another version of this inequality. To do so, we first
have to find something new in the simple case n = 4. The following results are quite
interesting.

Example 1.2.1. Let a, b, c, d be non-negative real numbers such that a + b + c + d = 1.
Prove that

a(a−b)(a−c)(a−d)+b(b−a)(b−c)(b−d)+c(c−a)(c−b)(c−d)+d(d−a)(d−b)(d−c) ≥ −1

432
.

(Pham Kim Hung)

SOLUTION. We use the entirely mixing variable and the renewed derivative to solve
this problem. Notice that our inequality is exactly

1

432
(a+ b+ c+ d)4 +

∑
cyc

a(a− b)(a− c)(a− d) ≥ 0.

Notice that the inequality is clearly true if d = 0, so we only need to prove that (after
taking the global derivative)

1

27
(a+ b+ c+ d)3 +

∑
cyc

(a− b)(a− c)(a− d) ≥ 0.
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Because the expression ∑
cyc

(a− b)(a− c)(a− d)

is unchanged if we decrease a, b, c all at once, it suffices to consider the inequality in
case min{a, b, c, d} = 0. WLOG, assume that d = 0, then the inequality becomes

1

27
(a+ b+ c)3 + a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b)− abc ≥ 0.

This inequality follows from AM-GM inequality and Schur inequality immediately.
We are done. Equality cannot hold.

∇

Example 1.2.2. Let a, b, c, d be non-negative real numbers. Prove that

a(a−b)(a−c)(a−d)+b(b−a)(b−c)(b−d)+c(c−a)(c−b)(c−d)+d(d−a)(d−b)(d−c)+abcd ≥ 0.

(Pham Kim Hung)

SOLUTION. We use the global derivative as in the previous solution. Notice that this
inequality is obvious due to Schur inequality if one of four numbers a, b, c, d is equal
to 0. By taking the global derivative of the left-hand side expression, we only need
to prove that ∑

cyc

(a− b)(a− c)(a− d) +
∑
cyc

abc ≥ 0.

Using the mixing all variables method, if suffices to prove it in case min{a, b, c, d} =

0. WLOG, assume that a ≥ b ≥ c ≥ d = 0. The inequality becomes

a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b) ≥ 0,

which is exactly Schur inequality for three numbers;, so we are done. The equality
holds for a = b = c, d = 0 or permutations.

∇

Example 1.2.3. Let a, b, c, d be non-negative real numbers such that a2 + b2 + c2 + d2 = 4.
Prove that

a(a− b)(a− c)(a− d) + b(b− a)(b− c)(b− d) + c(c− a)(c− b)(c− d)+

+d(d− a)(d− b)(d− c) ≥ abcd− 1.

(Pham Kim Hung)



c© GIL Publishing House. All rights reserved. 271

SOLUTION. We have to prove that

16
∑

a(a− b)(a− c)(a− d) + (a2 + b2 + c2 + d2)2 − 16abcd ≥ 0.

If d = 0, the inequality is obvious due to AM-GM inequality and Schur inequality
(for three numbers). According to the mixing all variables method and the global
derivative, it suffices to prove that

16
∑
cyc

(a− b)(a− c)(a− d) + 4(a+ b+ c+ d)(a2 + b2 + c2 + d2)− 16
∑
cyc

abc ≥ 0.

or

4
∑
cyc

(a− b)(a− c)(a− d) + (a+ b+ c+ d)(a2 + b2 + c2 + d2)− 4
∑
cyc

abc ≥ 0 (?)

If one of four numbers a, b, c, d, say d, is equal to 0, then the previous inequality
becomes

4

a,b,c∑
cyc

a(a− b)(a− c) + (a+ b+ c)(a2 + b2 + c2)− 8abc ≥ 0,

which is obvious due to the following applications of Schur inequality and AM-GM
inequality

4

a,b,c∑
cyc

a(a− b)(a− c) ≥ 0 ;

(a+ b+ c)(a2 + b2 + c2)− 8abc ≥ 9abc− 8abc ≥ 0 ;

Therefore, according to the mixing all variables method, in order to prove (?) by
taking the global derivative, it suffices to prove that

4

a,b,c,d∑
cyc

a2 + 2

(
a,b,c,d∑
cyc

a

)2

≥ 8
∑
sym

ab (??)

Clearly, AM-GM inequality yields that

4

a,b,c,d∑
cyc

a2 ≥ 8

3

∑
sym

ab ; 2

(
a,b,c,d∑
cyc

a

)2

≥ 16

3

∑
sym

ab ;

Adding up the results above, we get (??) and then (?). The conclusion follows and
the equality holds for a = b = c = d = 1.

∇

This should satisfy anyone who desperately wanted a Schur inequality in 4 vari-
ables. What happens for the case n = 5? Generalizations are a bit more complicated.
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Example 1.2.4. Let a, b, c, d, e be non-negative real numbers such that a+b+c+d+e = 1.
Prove that

a(a−b)(a−c)(a−d)(a−e)+b(b−a)(b−c)(b−d)(b−e)+c(c−a)(c−b)(c−d)(c−e)+

+d(d− a)(d− b)(d− c)(d− e) + e(e− a)(e− b)(e− c)(e− d) ≥ −1

4320
.

(Pham Kim Hung)

SOLUTION. To prove this problem, we have to use two of the previous results. Our
inequality is equivalent to

1

4320
(a+ b+ c+ d+ e)5 +

∑
cyc

a(a− b)(a− c)(a− d)(a− e) ≥ 0.

Taking the global derivative, we have to prove that

5

860
(a+ b+ c+ d+ e)4 +

∑
cyc

(a− b)(a− c)(a− d)(a− e) ≥ 0.

Due to the mixing all variables method, we only need to check this inequality in case
min{a, b, c, d, e} = 0. WLOG, assume that a ≥ b ≥ c ≥ d ≥ e = 0. The inequality
becomes

5

860
(a+ b+ c+ d)4 +

a,b,c,d∑
cyc

a(a− b)(a− c)(a− d) ≥ 0.

This inequality is true according to example 1.2.1 because
5

860
≥ 1

432
. This shows

that it suffices to consider the first inequality in case a ≥ b ≥ c ≥ d ≥ e = 0. In this
case, the inequality becomes

1

4320
(a+ b+ c+ d)5 +

a,b,c,d∑
cyc

a2(a− b)(a− c)(a− d) ≥ 0.

If one of the numbers a, b, c, d is equal to 0, the inequality is true by Schur inequality
so we only need to prove that (by taking the global derivative)

1

216
(a+ b+ c+ d)4 + 2

a,b,c,d∑
cyc

a(a− b)(a− c)(a− d) ≥ 0

or
1

432
(a+ b+ c+ d)4 +

a,b,c,d∑
cyc

a(a− b)(a− c)(a− d) ≥ 0.

This inequality is exactly the inequality in example 1.2.2. The proof is completed and
we cannot have equality.

∇
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Example 1.2.5. Let a, b, c, d, e be non-negative real numbers. Prove that

a(a− b)(a− c)...(a− e) + b(b− a)(b− c)...(b− e) + c(c− a)(c− b)(c− d)(c− e)+

+d(d−a)...(d−c)(d−e)+e(e−a)(e−b)...(e−d)+a2bcd+b2cde+c2dea+d2eab+e2abc ≥ 0.

SOLUTION. This problem is easier than the previous problem. Taking the global
derivative for a first time, we obtain an obvious inequality∑

cyc

(a− b)(a− c)(a− d)(a− e) + 2
∑
cyc

abcd+
∑
cyc

a2(bc+ cd+ da) ≥ 0

which is true when one of the numbers a, b, c, d, e is equal to 0. Now we only need to
prove the initial inequality in case min{a, b, c, d, e} = 0. WLOG, assume that e = 0,
then the inequality becomes

a,b,c,d∑
cyc

a2(a− b)(a− c)(a− d) + a2bcd ≥ 0.

If one of a, b, c, d is equal to 0, the inequality is true due to Schur inequality. Therefore
we only need to prove that (taking the global derivative for the second time)

2

a,b,c,d∑
cyc

a(a− b)(a− c)(a− d) + 2abcd+ a2(bc+ cd+ da) ≥ 0.

This inequality is true according to example 1.2.2 and we are done immediately. The
equality holds if and only if three of the five numbers a, b, c, d, e are equal to each
other and the two remaining numbers are equal to 0.

∇

These problems have given us a strong expectation of something similar in the
general case of n variables. Of course, everything becomes much harder in this case,
and we will need to use induction.

Example 1.2.6. Let a1, a2, ..., an be non-negative real numbers such that a1+a2+...+an =

1. For c = −9 · 22n−7n(n− 1)(n− 2), prove that

a1(a1−a2)...(a1−an)+a2(a2−a3)...(a2−an)+...+an(an−a1)(an−a2)...(an−an−1) ≥ 1

c
.

(Pham Kim Hung)

SOLUTION. To handle this problem, we need to prove it in the general case, that
means, find an estimation of

Fk,n =

n∑
i=1

aki n∏
j=1,j 6=i

(ai − aj)

 ,
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where the non-negative real numbers a1, a2, ..., an have sum 1. After a process of
guessing and checking induction steps, we find out

n∑
i=1

aki n∏
j=1,j 6=i

(ai − aj)

 ≥ 3−229−2n−2k

(n+ k − 1)(n+ k − 2)(n+ k − 3)
.

Let’s construct the following sequence for all k ≥ 1, n ≥ 4

ck,n = 9 · 22n+2k−9(n+ k − 1)(n+ k − 2)(n+ k − 3).

We will prove the following general result by induction

1

ck,n

(
n∑
i=1

ai

)k+n−1
+

n∑
i=1

aki n∏
j=1,j 6=i

(ai − aj)

 ≥ 0 (?)

We use induction for m = k + n, and we assume that (?) is already true for all
n′, k′ such that k′ + n′ ≤ m. We will prove that (?) is also true for all n, k such that
n+ k = m+ 1. Indeed, after taking the global derivative, the inequality (?) becomes

n(n+ k − 1)

ck,n

(
n∑
i=1

ai

)k+n−1
+ k

n∑
i=1

ak−1i

n∏
j=1,j 6=i

(ai − aj)

 ≥ 0 (??)

According to the inductive hypothesis (for n and k − 1), we have

1

ck−1,n

(
n∑
i=1

ai

)k+n−1
+

n∑
i=1

ak−1i

n∏
j=1,j 6=i

(ai − aj)

 ≥ 0

Moreover, because
n(n+ k − 1)

kck,n
≥ 1

ck−1,n
∀n ≥ 4,

the inequality (??) is successfully proved. By the mixing all variables method, we
only need to consider (?) in case min{a1, a2, ..., an} = 0. WLOG, assume that a1 ≥
a2 ≥ ... ≥ an, then an = 0 and the inequality becomes

1

ck,n

(
n−1∑
i=1

ai

)k+n−1
+

n−1∑
i=1

ak+1
i

n−1∏
j=1,j 6=i

(ai − aj)

 ≥ 0

or (since ck,n = ck+1,n−1)

1

ck+1,n−1

(
n−1∑
i=1

ai

)k+n−1
+

n−1∑
i=1

ak+1
i

n−1∏
j=1,j 6=i

(ai − aj)

 ≥ 0.

This is another form of the inequality (?) for n−1 numbers a1, a2, ..., an−1 and for the
exponent k + 1 (instead of k). Performing this reasoning n − 4 times (or we can use
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induction again), we can change (?) to the problem of only four numbers a1, a2, a3, a4
but with the exponents k + n− 4. Namely, we have to prove that

(a+ b+ c+ d)k+n−1 +M
∑
cyc

ak+n−4(a− b)(a− c)(a− d) ≥ 0 (? ? ?)

where M = ck+n−4,4 = ck,n. Taking the global derivative of (? ? ?) exactly r times
(r ≤ k + n− 4), we obtain the following inequality

4r(k + n− 1)(k + n− 2)...(k + n− r)(a+ b+ c+ d)4+

+(k + n− 4)(k + n− 3)...(k + n− r − 3)M
∑
cyc

ak+n−4−r(a− b)(a− c)(a− d) ≥ 0 [?]

We will call the inequality constructed by taking r times the global derivative of (?)

as the [rth] inequality (this previous inequality is the [rth] inequality). If abcd = 0,
assume d = 0, and the [rth] inequality is true for all r ∈ {0, 1, 2, ..., n+ k− 5} because∑

cyc

ak+n−4−r(a− b)(a− c)(a− d) =
∑
cyc

ak+n−3−r(a− b)(a− c) ≥ 0.

According to the principles of the mixing all variables method and global derivative,
if the [(r+ 1)th] inequality is true for all a, b, c, d and the [rth] inequality is true when
abcd = 0 then the [rth] inequality is true for all non-negative real numbers a, b, c, d.
Because abcd = 0, the [rth] is true for all 0 ≤ r ≤ n + k − 5, so we conclude that, in
order to prove the [0th] inequality (which is exactly (? ? ?)), we only need to check
the [(n+ k − 4)th] inequality. The [(n+ k − 4)th] inequality is as follows

4n+k−4(k + n− 1)(k + n− 2)...(4)(a+ b+ c+ d)4+

+(k + n− 4)(k + n− 3)...(1)M
∑
cyc

(a− b)(a− c)(a− d) ≥ 0

⇔ 4n+k−4(k+n−1)(k+n−2)(k+n−3)(a+b+c+d)4+6M
∑
cyc

(a−b)(a−c)(a−d) ≥ 0

⇔ (a+ b+ c+ d)4 + 27
∑
cyc

(a− b)(a− c)(a− d) ≥ 0.

This last inequality is clearly true by the mixing all variables method and AM-GM
inequality. The inductive process is finished and the conclusion follows immediately.

F Consider the non-negative real numbers a1, a2, ..., an such that a1+a2+ ...+an = 1.
For k = 9 · 22n+2k−9(n+ k − 1)(n+ k − 2)(n+ k − 3), we have

n∑
i=1

aki n∏
j=1,j 6=i

(ai − aj)

 ≥ −1

k
.

∇
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Article 2

Looking at Familiar Expressions

1.3 On AM-GM Inequality

Certainly, if a, b, c are positive real numbers then AM-GM inequality shows that

a

b
+
b

c
+
c

a
≥ 3

3

√
a

b
· b
c
· c
a

= 3.

We denote G(a, b, c) =
a

b
+
b

c
+
c

a
− 3, then G(a, b, c) ≥ 0 for all a, b, c > 0. This article

will present some nice properties regarding the function G.

Example 1.3.1. Let a, b, c, k be positive real numbers. Prove that

a

b
+
b

c
+
c

a
≥ a+ k

b+ k
+
b+ k

c+ k
+
c+ k

a+ k
.

SOLUTION. Notice that we can transform the expression G(a, b, c) into

G(a, b, c) =

(
a

b
+
b

a
− 2

)
+

(
b

c
+
c

a
− b

a
− 1

)
=

(a− b)2

ab
+

(a− c)(b− c)
ac

.

WLOG, assume that c = min(a, b, c). Our inequality is equivalent to

(a− b)2

ab
+

(a− c)(b− c)
ac

≥ (a− b)2

(a+ k)(b+ k)
+

(a− c)(b− c)
(a+ k)(c+ k)

.

Because c = min(a, b, c) it follows that (a−c)(b−c) ≥ 0 and the inequality is obvious.
The proof is completed and equality holds for a = b = c.

∇

Example 1.3.2. Let a, b, c be positive real numbers. If k ≥ max(a2, b2, c2), prove that

a

b
+
b

c
+
c

a
≥ a2 + k

b2 + k
+
b2 + k

c2 + k
+
c2 + k

a2 + k
.

(Pham Kim Hung)
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SOLUTION. Similarly as in the preceding inequality, this one is equivalent to

(a− b)2

ab
+

(a− c)(b− c)
ac

≥ (a− b)2(a+ b)2

(a2 + k)(b2 + k)
+

(a− c)(b− c)(a+ c)(b+ c)

(a2 + k)(c2 + k)
.

WLOG, assume that c = min(a, b, c). It’s sufficient to prove that

(a2 + k)(b2 + k) ≥ ab(a+ b)2 ;

(a2 + k)(c2 + k) ≥ ac(a+ c)(b+ c) .

The first one is certainly true because

(a2 + k)(b2 + k) ≥ (a2 + b2)2 ≥ ab(a+ b)2.

The second one is equivalent to

c2(k − ac) + a2(k − bc) + k2 − abc2 ≥ 0

which is also obvious because k ≥ max(a2, b2, c2). We are done.

Comment. The following inequality is stronger

F Let a, b, c be positive real numbers. If k ≥ max(ab, bc, ca), prove that

a

b
+
b

c
+
c

a
≥ a2 + k

b2 + k
+
b2 + k

c2 + k
+
c2 + k

a2 + k
.

To prove this one, we only note that if c = min(a, b, c) and k ≥ max(ab, bc, ca) then

(a2 + k)(b2 + k) ≥ (a2 + ab)(b2 + ab) = ab(a+ b)2 ;

c2(k− ac) + a2(k− bc) + k2 − abc2 ≥ c2(k− ac) + a2(k− bc) + (ac) · (bc)− abc2 = 0 .

The equality holds for a = b ≤ c and k = ac. Both a and c can take arbitrary values.

∇

Example 1.3.3. If a, b, c are the side lengths of a triangle, then

4

(
a

b
+
b

c
+
c

a

)
≥ 9 +

a2 + c2

c2 + b2
+
c2 + b2

b2 + a2
+
b2 + a2

a2 + c2
.

(Pham Kim Hung)

SOLUTION. The inequality can be rewritten in the following form

4(a− b)2

ab
+

4(c− a)(c− b)
ac

≥ (a2 − b2)2

(a2 + c2)(c2 + b2)
+

(c2 − a2)(c2 − b2)

(a2 + b2)(a2 + c2)
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WLOG, we may assume c = min(a, b, c). Then it’s not too difficult to show that

1

ac
≥ (c+ a)(c+ b)

(a2 + b2)(c2 + b2)

4

ab
≥ (a+ b)2

(a2 + c2)(b2 + c2)

and the proof is completed. Equality holds for a = b = c.

∇

Example 1.3.4. Let a, b, c be positive real numbers. Prove that

a2

b2
+
b2

c2
+
c2

a2
+

8(ab+ bc+ ca)

a2 + b2 + c2
≥ 11.

(Nguyen Van Thach)

SOLUTION. Similarly, this inequality can be rewritten in the following form

(a−b)2
(

(a+ b)2

a2b2
− 8

a2 + b2 + c2

)
+(c−a)(c−b)

(
(a+ c)(b+ c)

a2c2
− 8

a2 + b2 + c2

)
≥ 0.

WLOG, assume that c = min{a, b, c}. We have

(a+ b)2

a2b2
≥ 8

a2 + b2
≥ 8

a2 + b2 + c2
.

Moreover,

(a+ c)(b+ c)(a2 + b2 + c2) ≥ 2c(a+ c)(a2 + 2c2) ≥ 8a2c2

⇒ (a+ c)(b+ c)

a2c2
≥ 8

a2 + b2 + c2
.

Therefore we get the desired result. Equality holds for a = b = c.

∇

Example 1.3.5. Let a, b, c be the side lengths of a triangle. Prove that

a2 + b2

a2 + c2
+
c2 + a2

c2 + b2
+
b2 + c2

b2 + a2
≥ a+ b

a+ c
+
a+ c

b+ c
+
b+ c

b+ a
.

(Vo Quoc Ba Can)

SOLUTION. It is easy to rewrite the inequality in the following form

(a− b)2M + (c− a)(c− b)N ≥ 0,
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where

M =
(a+ b)2

(a2 + c2)(b2 + c2)
− 1

(a+ c)(b+ c)
;

N =
(a+ c)(b+ c)

(a2 + b2)(a2 + c2)
− 1

(a+ c)(a+ b)
.

WLOG, assume that c = min{a, b, c}. Clearly, M ≥ 0 and N ≥ 0 since

(a+c)2(b+c)(a+b)−(a2+b2)(a2+c2) = a3(b+c−a)+3a2bc+3abc2+a2c2+c3(a+b) ≥ 0.

We are done. Equality holds for a = b = c.

∇

Example 1.3.6. For all distinct real numbers a, b, c, prove that

(a− b)2

(b− c)2
+

(b− c)2

(c− a)2
+

(c− a)2

(a− b)2
≥ 5.

(Darij Grinberg)

SOLUTION. This inequality is directly deduced from the following identity

(a− b)2

(b− c)2
+

(b− c)2

(c− a)2
+

(c− a)2

(a− b)2
= 5 +

(
1 +

a− b
b− c

+
b− c
c− a

+
c− a
a− b

)2

.

Comment. According to this identity, we can obtain the following results

F Let a, b, c be distinct real numbers. Prove that

G
(
(a− b)2, (b− c)2, (c− a)2

)
≥
(

8 + 3
√

8
)
G(a− b, b− c, c− a).

G
(
(a− b)2, (b− c)2, (c− a)2

)
+G

(
(c− a)2, (b− c)2, (a− b)2

)
≥ 9

2
.

∇

Example 1.3.7. Prove that for all positive real numbers a, b, c, we have

a

b
+
b

c
+
c

a
≥

√
a2 + c2

b2 + c2
+

√
c2 + b2

a2 + b2
+

√
b2 + a2

c2 + a2

SOLUTION. First Solution. First, we will prove that

∑
cyc

a

b
+
∑
cyc

b

a
≥
∑
cyc

√
a2 + c2

b2 + c2
+
∑
cyc

√
b2 + c2

a2 + c2
(1)

In order to prove (1), we only need to prove that

a

b
+
b

a
≥

√
a2 + c2

b2 + c2
+

√
b2 + c2

a2 + c2
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Indeed, by squaring, this inequality becomes

a2 + b2

ab
≥ a2 + b2 + 2c2√

(a2 + c2)(b2 + c2)

or (
a2 + b2

)√
(a2 + c2)(b2 + c2) ≥ ab

(
a2 + b2 + 2c2

)
or (

a2 + b2
)2

(a2 + c2)(b2 + c2) ≥ a2b2
(
a2 + b2 + 2c2

)2
or

c2(a2 − b2)2
(
a2 + b2 + c2

)
≥ 0,

which is clearly true. As a result, (1) is proved. Now, returning to our problem, we
assume by contradiction that the inequality

∑
cyc

a

b
<
∑
cyc

√
a2 + c2

b2 + c2
(2)

is false for a certain triple (a, b, c). By (1), we have

∑
cyc

a

b
+
∑
cyc

b

a
≥
∑
cyc

√
a2 + c2

b2 + c2
+
∑
cyc

√
b2 + c2

a2 + c2

Combining this with (2), we get that

∑
cyc

b

a
>
∑
cyc

√
b2 + c2

a2 + c2
(3)

On the other hand, from (2), we have that

(∑
cyc

a

b

)2

<

∑
cyc

√
a2 + c2

b2 + c2

2

⇔
∑
cyc

a2

b2
+ 2
∑
cyc

b

a
<
∑
cyc

a2 + c2

b2 + c2
+ 2
∑
cyc

√
b2 + c2

a2 + c2
.

Combining with (3), we obtain

∑
cyc

a2

b2
<
∑
cyc

a2 + c2

b2 + c2
(4)

This inequality contradicts the result in example 1.3.1. Therefore, the assumption
is false, or in other words, the inequality is proved successfully. Equality holds for
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a = b = c.

Second Solution. Recall the following result, presented in the first volume of this
book.

Let a1, a2, .., an and b1 ≥ b2 ≥ ... ≥ bn ≥ 0 be positive real numbers such that
a1a2...ak ≥ b1b2...bk ∀k ∈ {1, 2, ..., n}, then a1 + a2 + ...+ an ≥ b1 + b2 + ...+ bn.

For the case n = 3, we obtain the following result

Given positive numbers a, b, c, x, y, z such that max {a, b, c} ≥ max {x, y, z} ,
min {a, b, c} ≤ min {x, y, z}, then a+ b+ c ≥ x+ y + z.

According to this result, we will prove a general inequality for all a, b, c, x > 0 as
follows ∑

cyc

a

b
≥
∑
cyc

(
ax + cx

bx + cx

) 1
x

.

Indeed, we already have

a

b
· b
c
· c
a

=

(
ax + cx

bx + cx

) 1
x

·
(
cx + bx

ax + bx

) 1
x

·
(
bx + ax

cx + ax

) 1
x

= 1.

It suffices to show that

max

{
a

b
,
b

c
,
c

a

}
≥ max

{(
ax + cx

bx + cx

) 1
x

,

(
cx + bx

ax + bx

) 1
x

,

(
bx + ax

cx + ax

) 1
x

}
(5)

min

{
a

b
,
b

c
,
c

a

}
≤ min

{(
ax + cx

bx + cx

) 1
x

,

(
cx + bx

ax + bx

) 1
x

,

(
bx + ax

cx + ax

) 1
x

}
(6)

We prove (5) (and (6) can be proved similarly). WLOG, assume that(
ax + cx

bx + cx

) 1
x

= max

{(
ax + cx

bx + cx

) 1
x

,

(
cx + bx

ax + bx

) 1
x

,

(
bx + ax

cx + ax

) 1
x

}
.

We see that
(
ax + cx

bx + cx

) 1
x

≥ 1, gives a ≥ b. Therefore

ax

bx
≥ ax + cx

bx + cx
⇒ a

b
≥
(
ax + cx

bx + cx

) 1
x

.

This ends the proof. Equality holds for a = b = c.

∇

Example 1.3.8. Let a, b, c be distinct real numbers. Prove that

(a− b)2

(b− c)2
+

(b− c)2

(c− a)2
+

(c− a)2

(a− b)2
≥ a+ b

b+ c
+
b+ c

c+ a
+
c+ a

a+ b
.
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(Pham Kim Hung)

SOLUTION. WLOG, we may assume that c = min(a, b, c). Taking into account the
preceding example 1.3.1, we deduce that

G(a+ b, b+ c, c+ a) ≥ G(a+ b− 2c, b+ c− 2c, c+ a− 2c).

Let now x = a− c, y = b− c, then it remains to prove that (after we consider c = 0)

(x− y)2

y2
+
y2

x2
+

x2

(x− y)2
≥ x+ y

y
+
y

x
+

x

x+ y

⇔ x2

y2
+
y2

x2
+

x2

(x− y)2
≥ 3x

y
+
y

x
+

x

x+ y
.

From here, we need to consider some smaller cases

(i). The first case. If x ≥ y then

Case y ≤ x ≤ 2y. The desired result is obtained by adding

x2

y2
+

9

4
≥ 3x

y
,
y2

x2
+

1

4
≥ y

x
,

x2

(x− y)2
≥ 4,

2

3
≥ x

x+ y
.

Case 2y ≤ x ≤ 2.3y. The desired result is obtained by adding

x2

y2
+ 2 ≥ 3x

y
,
y2

x2
+

1

4
≥ y

x
,

x2

(x− y)2
≥ 3.1,

2.3

3.3
≥ x

x+ y
.

Case 2.3y ≤ x ≤ 2.5y. The desired result is obtained by adding

x2

y2
+ 1.61 ≥ 3x

y
,
y2

x2
+

1

4
≥ y

x
,

x2

(x− y)2
≥ 2.77,

2.5

3.5
≥ x

x+ y
.

Case 2.5y ≤ x ≤ 3y. The desired result is obtained by adding

x2

y2
+ 1.25 ≥ 3x

y
,
y2

x2
+

1

4
≥ y

x
,

x2

(x− y)2
≥ 2.25,

3

4
≥ x

x+ y
.

Case 3y ≤ x ≤ 4y. The desired result is obtained by adding

x2

y2
≥ 3x

y
,
y2

x2
+

1

4
≥ y

x
,

x2

(x− y)2
≥ 1.77,

4

5
≥ x

x+ y
.

Case x ≥ 4y. The desired result is obtained by adding

x2

y2
≥ 3x

y
+ 4,

y2

x2
+

1

4
≥ y

x
,

x2

(x− y)2
≥ 1, 1 ≥ x

x+ y
.

(ii). The second case. If x ≤ y then
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Case x ≤ y ≤ 1.5x. The desired result is obtained by adding

x2

y2
+ 2 ≥ 3x

y
,
y2

x2
≥ y

x
,

x2

(y − x)2
≥ 4,

1

2
≥ x

x+ y
.

Case 1.5x ≤ y ≤ 1.8x. The desired result is obtained by adding

x2

y2
+

14

9
≥ 3x

y
,
y2

x2
≥ y

x
+ 0.75,

x2

(y − x)2
≥ 1.56,

1

2.5
≥ x

x+ y
.

Case 1.8x ≤ y ≤ 3x. The desired result is obtained by adding

x2

y2
+ 1.4 ≥ 3x

y
,
y2

x2
≥ y

x
+ 1.44,

x2

(y − x)2
≥ 1

4
,

1

2.8
≥ x

x+ y
.

Case y ≥ 3x. The desired result is obtained by adding

x2

y2
+

8

9
≥ 3x

y
,
y2

x2
≥ y

x
+ 6,

x2

(y − x)2
≥ 0, 1 ≥ x

x+ y
.

The proof has been proved completely. There’s no equality case.

∇
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1.4 On Nesbitt’s Inequality

The famous Nesbitt inequality has the following form

F If a, b, c are positive real numbers then

N(a, b, c) =
a

b+ c
+

b

c+ a
+

c

a+ b
− 3

2
≥ 0.

In the following pages, we will discuss some inequalities which have the same
appearance as Nesbitt inequality and we will also discuss some nice properties of
N(a, b, c). First we give a famous generalization of Nesbitt inequality with real ex-
ponents.

Example 1.4.1. Let a, b, c be non-negative real numbers. For each real number k, find the
minimum of the following expression

S =

(
a

b+ c

)k
+

(
b

c+ a

)k
+

(
c

a+ b

)k
.

SOLUTION. Certainly, Nesbitt inequality is a particular case of this inequality for
k = 1. If k ≥ 1 or k ≤ 0 then it’s easy to deduce that(

a

b+ c

)k
+

(
b

c+ a

)k
+

(
c

a+ b

)k
≥ 3

2k
.

If k =
1

2
, we obtain a familiar result as follows√

a

b+ c
+

√
b

a+ c
+

√
c

a+ b
≥ 2.

The most difficult case is 0 < k < 1. We will prove by mixing variables that

f(a, b, c) =

(
a

b+ c

)k
+

(
b

c+ a

)k
+

(
c

a+ b

)k
≥ min

{
2,

3

2k

}
.

WLOG, we may assume that a ≥ b ≥ c. Let t =
a+ b

2
≥ u =

a− b
2
≥ 0 then

∑
cyc

(
a

b+ c

)k
= g(u) =

(
u+ t

t− u+ c

)k
+

(
t− u

u+ t+ c

)k
+
( c

2t

)k
.

We infer that the derivative

g′(u) = k

(
u+ t

u− t+ c

)k−1
2t+ c

(u− t+ c)2
+ k

(
t− u

u+ t− c

)k−1 −2t− c
(u+ t+ c)2

has the same sign as the following function

h(u) = (k − 1)
[

ln(t+ u)− ln(t− u)
]

+ (k + 1)
[

ln(u+ t+ c)− ln(t− u+ c)
]
.
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It’s easy to check that

h′(u) =
2t(k − 1)

t2 − u2
+

2(k + 1)(t+ c)

(t+ c)2 − u2
.

Because t ≥ c it follows that t(t+c)(t−c) ≥ (t+2c)u2 and therefore 2(t+c)(t2−u2) ≥
t
(
(t+ c)2 − u2

)
. If k+ 1 > 2(1−k) (or k > 1/3), we have indeed that h′(u) > 0. Thus

h(u) ≥ h(0) = 0 ⇒ g′(u) ≥ 0. Therefore g is a monotonic function if u ≥ 0 and
therefore ∑

cyc

(
a

b+ c

)k
≥ g(u) ≥ g(0) =

2tk

(t+ c)k
+

ck

(2t)k
(?)

Because g(0) is homogeneous, we may assume that c ≤ t = 1. Consider the function

p(c) =
2k+1

(1 + c)k
+ ck

Since the derivative

p′(c) =
−k.2k+1

(1 + c)k+1
+ kck−1

has the same sign as the function

q(c) = (k + 1) ln(c+ 1) + (k − 1) ln c− (k + 1) ln 2

and also because, as it’s easy to check

q′(c) =
k + 1

c+ 1
+
k − 1

c
=

(k + 1)c+ (c+ 1)(k − 1)

c(c+ 1)

has no more than one real root, we obtain that p′(c) = 0 has no more than one real
root in (0, 1) (because p′(1) = 0). Furthermore, lim

c→0
p(c) = +∞, so we obtain

p(c) ≥ min
{
p(1) ; lim

c→0
p(c)

}
= min

{
3 ; 2k+1

}
(??)

According to (?) and (??), we conclude that(
a

b+ c

)k
+

(
b

a+ c

)k
+

(
c

a+ b

)k
≥ min

{
3

2k
; 2

}
.

The inequality has been proved in case k > 1/3, now we will consider the case
k ≤ 1/2. Choose three numbers α, β, γ satisfying that

√
α = ak,

√
β = bk,

√
γ = ck,

then

(b+ c)2k ≤ b2k + c2k ⇒
(

b

b+ c

)2k

+

(
c

c+ b

)2k

≥ 1 ⇒ ak

(b+ c)k
≥
√

α

β + γ

Constructing similar results and summing up, we get

ak

(b+ c)k
+

bk

(c+ a)k
+

ck

(a+ b)k
≥
√

α

β + γ
+

√
β

α+ γ
+

√
γ

α+ β
≥ 2.
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Therefore the problem has been completely solved, with the conclusion that(
a

b+ c

)k
+

(
b

a+ c

)k
+

(
c

a+ b

)k
≥ min

{
3

2k
; 2

}
.

If k =
ln 3

ln 2
− 1, the equality holds for a = b = c and a = b, c = 0 up to permutation.

Otherwise, the equality only holds in the case a = b = c.

∇

In volume I we have a problem from the Vietnam TST 2006, where we have al-
ready proved that if a, b, c are the side-lengths of a triangle then

(a+ b+ c)

(
1

a
+
a

b
+

1

c

)
≥ 6

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
,

or, in other words, N(a, b, c) ≥ 3N(a+ b, b+ c, c+ a). Moreover, we also have some
other nice results related to the expression N as follows

Example 1.4.2. Let a, b, c be the side lengths of a triangle. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
+

3

2
≤ 2ab

c(a+ b)
+

2bc

a(b+ c)
+

2ca

b(c+ a)
.

or, in other words, prove that N(a, b, c) ≤ 2N

(
1

a
,

1

b
,

1

c

)
= 2N(ab, bc, ca).

(Pham Kim Hung)

SOLUTION. First, we change the inequality to SOS form as follows∑
cyc

(2c2 − ab)(a+ b)(a− b)2 ≥ 0.

WLOG, assume that a ≥ b ≥ c, then Sa ≥ Sb ≥ Sc. Therefore, it’s enough to prove
that

b2Sb + c2Sc ≥ 0 ⇔ b2(2b2 − ac)(a+ c) + c2(2c2 − ab)(a+ b) ≥ 0.

This last inequality is obviously true because b(a + c) ≥ c(a + b) and b(2b2 − ac) ≥
c(2c2 − ab). The equality holds for a = b = c or (a, b, c) ∼ (2, 1, 1).

∇

Example 1.4.3. Let a, b, c be positive real numbers. Prove that

2ab

c(a+ b)
+

2bc

a(b+ c)
+

2ca

b(c+ a)
≥ a+ b

2c+ a+ b
+

b+ c

2a+ b+ c
+

c+ a

2b+ c+ a
,

or, in other words, prove that N
(

1

a
,

1

b
,

1

c

)
≥ N(a+ b, b+ c, c+ a).
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SOLUTION. Similarly to the preceding problem, after changing the inequality to SOS
form, we only need to prove that

a(b3 + c3) + bc(b2 + c2)

abc
∏
cyc

(a+ b)
≥ 2a+ 3b+ 3c∏

cyc
(2a+ b+ c)

if a, b, c ≥ 0 and a ≥ b ≥ c. Notice that b3 + c3 ≥ bc(b+ c), so

LHS ≥ 1

(a+ b)(a+ c)

and it remains to prove that

(a+ 2b+ c)(a+ b+ 2c)

(a+ b)(a+ c)
≥ 2a+ 3b+ 3c

2a+ b+ c

⇔ 2(b+ c)2 + 2a(b+ c)

(a+ b)(a+ c)
≥ 2(b+ c)

2a+ b+ c
⇔ a+ b+ c

(a+ b)(a+ c)
≥ 1

2a+ b+ c
.

This last condition is obviously true. The equality holds for a = b = c.

∇
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1.5 On Schur Inequality

Consider the following expression in three variables a, b and c

F (a, b, c) = a3 + b3 + c3 + 3abc− ab(a+ b)− bc(b+ c)− ca(c+ a).

By the third degree-Schur inequality, we have F (a, b, c) ≥ 0 for all non-negative
a, b, c. In this article, we will discover some interesting relations between Schur-like

expressions such as F (a2, b2, c2), F (a+ b, b+ c, c+ a), F
(

1

a
,

1

b
,

1

c

)
and F (a− b, b−

c, c− a), etc. First, we have

Example 1.5.1. Let a, b, c be the side lengths of a triangle. Prove that

F (a, b, c) ≤ F (a+ b, b+ c, c+ a).

(Pham Kim Hung)

SOLUTION. Notice that the expression F (a, b, c) can be rewritten as

F (a, b, c) =
∑
cyc

a(a− b)(a− c).

Therefore our inequality is equivalent to∑
cyc

(b+ c− a)(a− b)(a− b) ≥ 0

By hypothesis we have b+ c− a ≥ 0, c+ a− b ≥ 0, a+ b− c ≥ 0, so the above result
follows from the generalized Schur inequality. We are done and the equality holds
for a = b = c (equilateral triangle) or a = 2b = 2c up to permutation (degenerated
triangle).

∇

Example 1.5.2. Let a, b, c be the side lengths of a triangle. Prove that

F (a, b, c) ≤ 4a2b2c2F

(
1

a
,

1

b
,

1

c

)
.

(Pham Kim Hung)

SOLUTION. Generally, the expression F (a, b, c) can be represented in SOS form as

F (a, b, c) =
1

2

∑
cyc

(a+ b− c)(a− b)2.

Therefore we can change our inequality to the following∑
cyc

(
2c2
(

1

a
+

1

b
− 1

c

)
− (a+ b− c)

)
(a− b)2 ≥ 0,
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and therefore the coefficients Sa, Sb, Sc can be determined from

Sc = 2c2
(

1

a
+

1

b
− 1

c

)
− (a+ b− c) ;

Sb = 2b2
(

1

a
+

1

c
− 1

b

)
− (c+ a− b) ;

Sa = 2a2
(

1

b
+

1

c
− 1

a

)
− (b+ c− a) .

WLOG, assume that a ≥ b ≥ c. Clearly, Sa ≥ 0 and Sa ≥ Sb ≥ Sc. It suffices to prove
that Sb + Sc ≥ 0 or namely

4(b2 + c2)

a
+ 2

(
b2

c
+
c2

b
− b− c

)
− 2a ≥ 0.

Notice that a ≤ b+ c, so 2(b2 + c2) ≥ (b+ c)2 ≥ a2 and we are done because

4(b2 + c2)

a
≥ 2a ;

b2

c
+
c2

b
≥ b+ c .

The equality holds for a = b = c and a = 2b = 2c up to permutation.

∇

Example 1.5.3. Suppose that a, b, c are the side lengths of a triangle. Prove that

F (a2, b2, c2) ≤ 36F (ab, bc, ca).

(Pham Kim Hung)

SOLUTION. Similarly, this inequality can be transformed into∑
cyc

(a2 + b2 − c2)(a2 − b2)2 ≤ 36
∑
cyc

c2(ac+ bc− ab)(a− b)2

or Sa(b− c)2 + Sb(c− a)2 + Sc(a− b)2 ≥ 0, where

Sa = 36a2(ab+ ac− bc)− (b+ c)2(b2 + c2 − a2) ;

Sb = 36b2(bc+ ba− ca)− (c+ a)2(c2 + a2 − b2) ;

Sc = 36c2(ca+ cb− ab)− (a+ b)2(a2 + b2 − c2) .

WLOG, assume that a ≥ b ≥ c, then certainly Sa ≤ Sb ≤ Sc and Sc ≥ 0. Thererfore it
suffices to prove that Sa + Sb ≥ 0, which can be reduced to

36bc(b2 + c2) + 34a(b− c)2(b+ c)− (b2 − c2)2 − a2(a+ b+ c)2 − a4 + 2a2bc ≥ 0.

Suppose that S is the left expression in the previous inequality. Consider the cases
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(i). The first case. If 17(b− c)2(b+ c) ≥ a(a+ b+ c)(2a+ b+ c). Certainly, we have

S ≥ 34a(b− c)2(b+ c)− 2a2(a+ b+ c)2 − a4 − (b2 − c2)2

≥ 2a2(a+ b+ c)(2a+ b+ c)− 2a2(a+ b+ c)2 − a4 − b4

= 2a3(a+ b+ c)− a4 − b4 ≥ 0.

(ii). The second case. If 17(b− c)2(b+ c) ≤ a(a+ b+ c)(2a+ b+ c), we get that a ≥ a0
where a0 is the unique real root of the equation

17(b− c)2(b+ c) = x(x+ b+ c)(2x+ b+ c)).

Clearly, S = S(a) is a decreasing function of a, if a ≥ max(a0, b) (because S′(a) ≤ 0),
so we obtain

S = S(a) ≥ S(b+ c) = 36bc(b2 + c2) + 33(b2 − c2)2 − 5(b+ c)4 + 2bc(b+ c)2.

Everything now becomes clear. We have of course

S(b+ c) = 33(b2 − c2)2 − 5(b4 + c4) + 30b2c2 + 16bc(b2 + c2) + 2bc(b+ c)2

= 28(b2 − c2)2 + 16bc(b− c)2 + 2bc(b− c)2 ≥ 0.

Therefore S ≥ 0 in all cases and by SOS method, we get the desired result. The
equality holds for a = b = c and a = 2b = 2c up to permutation.

∇

Example 1.5.4. Prove that if a, b, c are the side lengths of a triangle then

9F (a, b, c) ≥ 2F (a− b, b− c, c− a),

and if a, b, c are the side lengths of an acute triangle then

3F (a, b, c) ≥ F (a− b, b− c, c− a).

(Pham Kim Hung)

SOLUTION. We will only prove the second part of this problem because the first part
can be deduced similarly but simpler. Now suppose that a, b, c are side lengths of an
acute triangle. Clearly, if x+ y + z = 0 then

x3 + y3 + z3 + 3xyz − xy(y + x)− yz(y + z)− zx(z + x) = 9xyz.

Then, the inequality is equivalent to∑
cyc

(a+ b− c)(a− b)2 ≥ 3(a− b)(b− c)(c− a).
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It’s possible to assume that a ≥ c ≥ b. By the mixing all variables method, we con-
clude that it’s sufficient to prove the inequality in case a, b, c are the side lengths of a
right triangle (that means a2 = b2 + c2). Because of the homogeneity, we can assume
that a = 1 and b2 + c2 = 1. The inequality is reduced to

bc(3− 2b− 2c) ≥ 3(1− b− c+ bc)(c− b)

⇔ 3(b+ c− 1)(c− b) ≥ bc(5c− b− 3).

Because b+ c ≤
√

2(b2 + c2) =
√

2, we deduce that

b+ c− 1

bc
=
b+ c−

√
b2 + c2

bc
=

2

b+ c+
√
b2 + c2

≥ 2

1 +
√

2
= 2

(√
2− 1

)
.

and it remains to prove that

6
(√

2− 1
)

(c− b) ≥ 5c− b− 3

⇔
(

11− 6
√

2
)
c+

(
6
√

2− 7
)
b ≤ 3.

This last inequality is an obvious application of Cauchy-Schwarz inequality(
11− 6

√
2
)
c+

(
6
√

2− 7
)
b ≤

√(
11− 6

√
2
)2

+
(

6
√

2− 7
)2
≈ 2.9 < 3.

This ends the proof. The equality holds for the equilateral triangle, a = b = c.

∇

Example 1.5.5. Let a, b, c be non-negative real numbers. Prove that

9F (a2, b2, c2) ≥ 8F
(
(a− b)2, (b− c)2, (c− a)2

)
.

(Pham Kim Hung)

SOLUTION. We use the mixing all variables method, similarly as in the preceding
problem. We can assume that a ≥ b ≥ c = 0. In this case, we obtain

F
(
(a− b)2, (b− c)2, (c− a)2

)
= a6 + b6 + (a− b)6 + 3a2b2(a− b)2 − (a2 + b2)(a− b)4

− a2b2(a2 + b2)− (a− b)2(a4 + b4)

= (a− b)2
(
4ab(a2 + b2)− (a2 − b2)2 + (a− b)4 + a2b2

)
= 8a2b2(a− b)2.

Moreover, because F (a2, b2, c2) = 9(a− b)2(a2 + b2)(a+ b)2, it remains to prove that

9(a2 + b2)(a+ b)2 ≥ 72a2b2,

which is obvious because a2 + b2 ≥ 2ab and (a+ b)2 ≥ 4ab. The proof is finished and
the equality holds for a = b = c and a = b, c = 0 up to permutation.

∇
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Article 3

Thought Brings Knowledge - Varied Ideas

1.6 Exponent Smash

Is there anything to say about the simplest inequalities such as a2 + b2 + c2 ≥ ab +

bc + ca or 3(a2 + b2 + c2) ≥ (a + b + c)2 ≥ 3(ab + bc + ca)? In a particular situation,
in an unusual situation, they become extremely complex, hard but interesting and
wonderful as well. That’s why I think that this kind of inequalities is very strange
and exceptional.

The unusual situation we have already mentioned is when each variable a, b, c
stands as the exponent of another number. Putting them in places of exponents, must
have broken up the simple inequalities between variables mentioned above. Let’s see
some problems.

Example 1.6.1. Let a, b, c be non-negative real numbers such that a + b + c = 3. Find the
maximum of the following expressions

(a) S2 = 2ab + 2bc + 2ca.

(b) S4 = 4ab + 4bc + 4ca.

(Pham Kim Hung)

SOLUTION. Don’t hurry to conclude that maxS2 = 6 and maxS4 = 12 because the
reality is different. We figure out a solution by the mixing variable method and solve
a general problem that involves both (a) and (b). WLOG, assume that a ≥ b ≥ c and
k ≥ 1 is a positive real constant. Consider the following expression

f(a, b, c) = kab + kbc + kca.

Let t =
a+ b

2
, u =

a− b
2

, then t ≥ 1, a = t+ u, b = t− u and

f(a, b, c) = kt
2−u2

+ kc(t−u) + kc(t+u) = g(u).
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Its derivative is

g′(u) = 2u ln k · kt
2−u2

+ ln k · ckct(kcu − k−cu).

By Lagrange theorem, there exists a real number r ∈ [−u, u] such that

kcu − k−cu

2u
= ckcr,

and therefore kcu − k−cu ≤ 2uckcu (because r ≤ u). Moreover, c ≤ 1 and c(t + u) ≤
(t− u)(t+ u) = t2 − u2 so we obtain g′(u) ≤ 0. Thus

g(u) ≤ g(0) = kt
2

+ 2kct = kt
2

+ 2kt(3−2t) = h(t).

We will prove that h(t) ≤ max

(
h

(
3

2

)
, h(1)

)
∀k ≥ 1. Since

h′(t) = 2t ln k · kt
2

+ 2(3− 4t) ln k · kt(3−2t)

we infer h′(t) = 0 ⇔ 4t− 3 = t · k3t(t−1). Consider the following function

q(t) = 3t(t− 1) ln k − ln(4t− 3) + ln t.

Because q′(t) = (6t − 3) ln k − 3

t(4t− 3)
is a decreasing function of t (when t ≥ 1),

we deduce that the equation q′(t) = 0 has no more than one root t ≥ 1. According

to Rolle’s theorem, the equation h′(t) = 0 has no more than two roots t ∈
[
1,

3

2

]
.

Moreover, because h′(1) = 0, we conclude that

h(t) ≤ max

(
h(1), h

(
3

2

))
.

According to this proof, we can synthesize a general result as follows

F Let a, b, c be non-negative real numbers with sum 3. For all k ≥ 1, we have

kab + kbc + kca ≤ max
(

3k, k9/4 + 2
)
.

∇

Example 1.6.2. Let a, b, c be non-negative real numbers such that a + b + c = 3. Find the
minimum of the expression

3−a
2

+ 3−b
2

+ 3−c
2

.

(Pham Kim Hung)
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SOLUTION. We will again propose and solve the general problem: for each real num-
ber k > 0, find the minimum of the following expression

P = ka
2

+ kb
2

+ kc
2

.

Certainly, if k ≥ 1 then P ≥ 3k by AM-GM inequality. Therefore we only need to

consider the remaining case k ≤ 1. WLOG, assume that a ≥ b ≥ c. Let t =
a+ b

2
, u =

a− b
2

, then t ≥ 1 and a = t+ u, b = t− u. Let k′ =
1

k
≥ 1 and consider the following

function
g(u) = k(t−u)

2

+ k(t+u)
2

+ kc
2

.

Since
g′(u) = 2 ln k · (t+ u)k(t+u)

2

− 2 ln k · (t− u)k(t−u)
2

,

we deduce that g′(u) = 0 ⇔ ln(t+ u)− ln(t− u) = −4tu ln k. Letting now

h(u) = ln(t+ u)− ln(t− u) + 4tu ln k,

we infer that

h′(u) =
1

t+ u
+

1

t− u
+ 4 ln k · t =

2t

t2 − u2
+ 4t ln k.

Therefore h′(u) = 0 ⇔ 2(t2 − u2) ln k = −1 ⇔ 2ab ln k′ = 1. Now we divide the
problem into two smaller cases

(i) The first case. If ab, bc, ca ≤ 1

2 ln k′
, then

ka
2

+ kb
2

+ kc
2

≥ k9/4 + 2k
1

2 ln k′ = k9/4 + 2e−1/2.

(ii) The second case. If ab ≥ 1

2 ln k′
. From the previous result, we deduce that

h′(u) = 0 ⇔ u = 0 ⇒ g′(u) = 0 ⇔ u = 0,

therefore
g(u) ≥ g(0) = 2kt

2

+ k(3−2t)
2

= f(t).

Our remaining work is to find the minimum of f(t) for
3

2
≥ t ≥ 1. Since

f ′(t) = 4 ln k
(
t.kt

2

− (3− 2t).k(3−2t)
2
)
,

we refer that f ′(t) = 0 ⇔ (3− 3t)(3− t) ln k′ = ln(3− 2t)− ln t. Denote

q(t) = (3− 3t)(3− t) ln k′ − ln(3− 2t)− ln t

then
q′(t) = (6t− 12) ln k′ +

2

3− 2t
+

1

t
= (6t− 12) ln k′ +

3

t(3− 2t)
.
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In the range
[
1,

3

2

]
, the function t(3−2t)(2−t) = 2t3−7t2+6t is decreasing, hence the

equation q′(t) = 0 has no more than one real root. By Rolle’s theorem, the equation

f ′(t) has no more than two roots in
[
1,

3

2

]
. It’s then easy to get that

f(t) ≥ min

(
f(1), f

(
3

2

))
= min

(
3k, 1 + 2k9/4

)
.

According to the previous solution, the following inequality holds

ka
2

+ kb
2

+ kc
2

≥ min
(

3k, 1 + 2k9/4, 2e−1/2 + k9/4
)
.

Notice that if k ≤ 1/3 then

min
(

3k, 1 + 2k9/4, 2e−1/2 + k9/4
)

= 3k.

Otherwise, if k ≥ 1/3 then

1 + 2k9/4 ≤ 2e−1/2 + k9/4

⇒ min
(

3k, 1 + 2k9/4, 2e−1/2 + k9/4
)

= min
(

3k, 1 + 2k9/4
)
.

Therefore, we can conclude that

ka
2

+ kb
2

+ kc
2

≥ min
(

3k, 1 + 2k9/4, 2e−1/2 + k9/4
)

= min
(

3k, 1 + 2k9/4
)
.

The initial problem is a special case for k =
1

3
. In this case, we have

3−a
2

+ 3−b
2

+ 3−c
2

≥ 1.

However, if k =
1

2
then the following stranger inequality holds

2−a
2

+ 2−b
2

+ 2−c
2

≥ 1 + 2−5/4.

∇

Example 1.6.3. Let a, b, c be non-negative real numbers such that a+ b+ c = 3. Prove that

24ab + 24bc + 24ca − 23abc ≤ 513.

(Pham Kim Hung)

SOLUTION. In fact, this problem reminds us of Schur inequality only that we know
have exponents (notice that if a + b + c = 3 then Schur inequality is equivalent to
4(ab+ bc+ ca) ≤ 9 + 3abc). According to the example 1.6.1, we deduce that

24ab + 24bc + 24ca = 16ab + 16bc + 16ca ≤ 169/4 + 2 = 29 + 2,
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moreover, we also have the obvious inequality 23abc ≥ 1, so

24ab + 24bc + 24ca − 23abc ≤ 29 + 2− 1 = 513.

∇

Transforming an usual inequality into one with exponents, you can obtain a new
one. This simple idea leads to plenty inequalities, some nice, hard but also interest-
ing. As a matter of fact, you will rarely encounter this kind of inequalities, however,
I strongly believe that a lot of enjoyable, enigmatic matters acan be found here. So
why don’t you try it yourself?

1.7 Unexpected Equalities

Some people often make mistakes when they believe that all symmetric inequalities
of three variables (in fraction forms) have their equality just in one of two standard
cases: a = b = c or a = b, c = 0 (and permutations of course). Sure almost all
inequalities belong to this kind, but some are stranger. These inequalities, very few
of them in comparison, make up a different and interesting area, where the usual
SOS method is nearly impossible. Here are some examples.

Example 1.7.1. Let x, y, z be non-negative real numbers. Prove that

x

y + z
+

y

z + x
+

z

x+ y
+

25(xy + yz + zx)

(x+ y + z)2
≥ 8.

(Pham Kim Hung)

SOLUTION. WLOG, assume that x ≥ y ≥ z. Denote

f(x, y, z) =
x

y + z
+

y

z + x
+

z

x+ y
+

25(xy + yz + zx)

(x+ y + z)2
.

We infer that

f(x, y, z)− f(x, y + z, 0) =
y

z + x
+

z

x+ y
− y + z

x
− 25yz

(x+ y + z)2

= yz

(
25

(x+ y + z)2
− 1

x(x+ y)
− 1

x(x+ z)

)
.

Notice that x ≥ y ≥ z, so we have

z

x+ y
+

y

x+ z
≤ z

y + z
+

y

y + z
= 1

⇒ 1

x+ y
+

1

x+ z
≤ 3

x+ y + z
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⇒ 1

x(x+ y)
+

1

x(x+ z)
≤ 3

x(x+ y + z)
≤ 25

(x+ y + z)2
.

This shows that f(x, y, z) ≥ f(x, y + z, 0). Denote t = y + z, then we have

f(x, y + z, 0) =
x

t
+
t

x
+

25xt

(x+ t)2
= −2 +

(x+ t)2

xt
+

25xt

x+ t)2
≥ 8,

and the conclusion follows. The equality holds for (x + t)2 = 5xt or
x

t
=
−3±

√
5

2
.

In the initial inequality, the equality holds for (x, y, z) ∼

(
−3±

√
5

2
, 1, 0

)
.

Comment. In general, the following inequality can be proved by the same method

F Given non-negative real numbers x, y, z. For all k ≥ 16, prove that

x

y + z
+

y

z + x
+

z

x+ y
+
k(xy + yz + zx)

(x+ y + z)2
≥ 2

(√
k − 1

)
.

∇

Example 1.7.2. Let x, y, z be non-negative real numbers. Prove that

x

y + z
+

y

z + x
+

z

x+ y
+

16(xy + yz + zx)

x2 + y2 + z2
≥ 8.

(Tan Pham Van)

SOLUTION. We use mixing variables to solve this problem. Denote x = max{x, y, z}
and

f(x, y, z) =
x

y + z
+

y

z + x
+

z

x+ y
+

16(xy + yz + zx)

x2 + y2 + z2
.

It is easy to see that the statament f(x, y, z) ≥ f(x, y + z, 0) is equivalent to

16(x+ y + z)2x(x+ z)(x+ y) ≥ (2x+ y + z)
(
x2 + y2 + z2

) (
x2 + (y + z)2

)
Notice that x = max{x, y, z}, so

(x+ y)(x+ z) ≥
(
x2 + y2 + z2

)
;

16(x+ y + z)2x ≥ (2x+ y + z)
(
x2 + (y + z)2

)
;

These two results show that f(x, y, z) ≥ f(x, y + z, 0). Normalizing x + y + z = 1,
we get

f(x, y, z) ≥ f(x, y + z, 0) = f(x, 1− x, 0) = g(x).

We have

g′(x) =
−(2x− 1)(2x2 − 2x− 1)(6x2 − 6x+ 1)

x2(x− 1)2(2x2 − 2x+ 1)2
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notice that
1

3
≤ x ≤ 1, and it follows that the equation g′(x) = 0 has two roots

x ∈

{
1

2
;

3 +
√

3

6

}
.

It’s then easy to infer that

g(x) ≥ g

(
3 +
√

3

6

)
= 4,

as desired. The equality holds for (x, y, z) ∼
(
3 +
√

3 ; 3−
√

3 ; 0
)
.

∇

Example 1.7.3. Let a, b, c be non-negative real numbers with sum 1. Prove that

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
+

27(a+ b+ c)2

a2 + b2 + c2
≥ 52.

(Pham Kim Hung)

SOLUTION. WLOG, assume that a ≥ b ≥ c. Denote

f(a, b, c) =
a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
+

27(a+ b+ c)2

a2 + b2 + c2
.

We will prove that f(a, b, c) ≥ f(a,
√
b2 + c2, 0). Indeed

f(a, b, c)− f
(
a,
√
b2 + c2, 0

)

=
b2

c2 + a2
+

c2

a2 + b2
− b2 + c2

a2
+

27(a+ b+ c)2 − 27
(
a+
√
b2 + c2

)2
a2 + b2 + c2

≥ −b2c2
(

1

a2(a2 + b2)
+

1

a2(a2 + c2)

)
+

54a
(
b+ c−

√
b2 + c2

)
a2 + b2 + c2

≥ −b2c2
(

1

a2(a2 + b2)
+

1

a2(a2 + c2)

)
+

54b2c2

4bc(a2 + b2 + c2)

Moreover, because
3

a2
≥ 54

4bc
;

1

a2(a2 + b2)
+

1

a2(a2 + c2)
≤ 3

a2 + b2 + c2
;

We infer that f(a, b, c) ≥ f
(
a,
√
b2 + c2, 0

)
. Denote t =

√
b2 + c2, then we have

f(a, t, 0) =
a2

t2
+
t2

a2
+

27(a+ t)2

a2 + t2
= −2 +

(a2 + t2)2

a2t2
+

54at

a2 + t2
+ 27
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=
(a2 + t2)2

a2t2
+

27at

a2 + t2
+

27at

a2 + t2
+ 25 ≥ 3

3
√

27 · 27 + 25 = 52.

This ends the proof. The equality holds for (a, b, c) ∼

(
−3±

√
5

2
, 1, 0

)
.

Comment. In a similar way, we can prove the following general inequality

F Given non-negative real numbers x, y, z. For all k ≥ 8, prove that

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
+
k(a+ b+ c)2

a2 + b2 + c2
≥ k +

3
√
k − 2.

∇

Example 1.7.4. Let a, b, c be non-negative real numbers. Prove that

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

24

(a+ b+ c)2
≥ 8

ab+ bc+ ca
.

(Pham Kim Hung)

SOLUTION. WLOG, assume that a ≥ b ≥ c. Denote

f(a, b, c) =
1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

24

(a+ b+ c)2
− 8

ab+ bc+ ca
.

We get that

f(a, b, c)− f(a, b+ c, 0)

=
1

(a+ b)2
− 1

(a+ b+ c)2
+

1

(c+ a)2
− 1

a2
− 8

ab+ bc+ ca
+

8

a(b+ c)

≥ 8bc

a(b+ c)(ab+ bc+ ca)
− c(2a+ c)

a2(a+ c)2
.

Because a ≥ b ≥ c, we get that

8ab ≥ (2a+ c)(b+ c) ;

(a+ c)2 ≥ (ab+ bc+ ca) ;

These two results show that f(a, b, c) − f(a, b + c, 0) ≥ 0. Denote t = b + c, then we
get

f(a, b+ c, 0) = f(a, t, 0) =
1

a2
+

1

t2
+

25

(a+ t)2
− 8

at
.

By AM-GM inequality, we have

at

(
1

a2
+

1

t2
+

25

(a+ t)2

)
= −2 +

(a+ t)2

at
+

25

(a+ t)2
≥ −2 + 2

√
25 = 8.
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This ends the proof. The equality holds for (a, b, c) ∼

(
−3±

√
5

2
, 1, 0

)
.

Comment. By a similar method, we can prove the following generalization

F Given non-negative real numbers a, b, c. For all k ≥ 15, prove that

1

(a+ b)2
+

1

(b+ c)2
+

1

(c+ a)2
+

k

(a+ b+ c)2
≥ 2
√
k + 1− 2

ab+ bc+ ca
.

Moreover, the following result can also be proved similarly.

F Given non-negative real numbers a, b, c. Prove that

1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2
+

8

a2 + b2 + c2
≥ 6

ab+ bc+ ca
.

∇

Example 1.7.5. Let a, b, c be non-negative real numbers. Prove that

a

b+ c
+

b

c+ a
+

c

a+ b
+

4(a+ b+ c)(ab+ bc+ ca)

a3 + b3 + c3
≥ 5.

(Tan Pham Van)

SOLUTION. WLOG, assume that a ≥ b ≥ c. Denote t = b+ c and

f(a, b, c) =
a

b+ c
+

b

c+ a
+

c

a+ b
+

4(a+ b+ c)(ab+ bc+ ca)

a3 + b3 + c3
.

We have

f(a, b, c)− f(a, b+ c, 0)

=
b

c+ a
+

c

a+ b
− b+ c

a
+

4(a+ b+ c)(ab+ bc+ ca)

a3 + b3 + c3
− 4a(b+ c)

a2 − a(b+ c) + (b+ c)2

=
4(a3 + 3a(b+ c)2 + (b+ c)3)bc

(a2 − a(b+ c) + (b+ c)2)(a3 + b3 + c3)
− (2a+ b+ c)bc

a(a+ b)(a+ c)
≥ 0

because
(a+ b)(a+ c) ≥ a2 − a(b+ c) + (b+ c)2 ;

4a(a3 + 3a(b+ c)2 + (b+ c)3) ≥ (2a+ b+ c)(a3 + b3 + c3) .

Moreover, by AM-GM inequality, we have

f(a, b+ c, 0) = f(a, t, 0) =
a

t
+
t

a
+

4at

a2 − at+ t2

=
a2 − at+ t2

at
+

4at

a2 − at+ t2
+ 1 ≥ 5.

This is the end of the proof. The equality holds for (a, b, c) ∼

(
3±
√

5

2
, 1, 0

)
.

∇
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Example 1.7.6. Let a, b, c be non-negative real numbers. Prove that√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
+

9
√
ab+ bc+ ca

a+ b+ c
≥ 6.

(Pham Kim Hung)

SOLUTION. WLOG, assume that a ≥ b ≥ c. We have√
ab

a+ c
+

√
ac

a+ b
≥
√

b · b
b+ c

+

√
c · c
c+ b

=
√
b+ c

⇒
√

b

c+ a
+

√
c

a+ b
≥
√
b+ c

a
.

Let now t = b+ c, then we get that√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
+

9
√
ab+ bc+ ca

a+ b+ c

≥
√
a

t
+

√
t

a
+

9
√
at

a+ t
=
a+ t√
at

+
9
√
at

a+ t
≥ 6.

The equality holds for a+ t = 3
√
at or (a, b, c) ∼

(
7±
√

45

2
, 1, 0

)
.

Comment. In a similar way, we can prove the following general result

F Given non-negative real numbers a, b, c prove for all k ≥ 4 that√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
+
k
√
ab+ bc+ ca

a+ b+ c
≥ 2
√
k.

The following result is also true and can be proved by a similar method

F Given non-negative real numbers a, b, c, prove for all k ≥ 3
√

3

2
that

√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
+

k(a+ b+ c)√
a2 + b2 + c2

≥
√

1 +
3
√

4k2 + k

√
1 +

3
√

4k2

−1 +
3
√

4k2
.

Letting k = 4, we get the following result

F Given non-negative real numbers a, b, c prove that√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
+

4(a+ b+ c)√
a2 + b2 + c2

≥ 37

5
.

∇
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Example 1.7.7. Let a, b, c be non-negative real numbers. Prove that√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
+

√
27(ab+ bc+ ca)

a2 + b2 + c2
≥ 7
√

2

2
.

(Vo Quoc Ba Can)

SOLUTION. Similarly as in the previous problem, we get that if a ≥ b ≥ c and t = b+c

then√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
+

√
27(ab+ bc+ ca)

a2 + b2 + c2
≥ a+ t√

at
+ 3
√

3 ·
√

at

a2 + t2
.

Denote x =
a+ t√
at
≥ 2. It remains to prove that

f(x) = x+
3
√

3√
x2 − 2

≥ 7
√

2

2
.

Checking the derivative f ′(x), it is easy to see that the equation f ′(x) = 0 has exactly
one root x = 2

√
2, therefore

f(x) ≥ f
(

2
√

2
)

= 2
√

2 +
3
√

3√
6

=
7
√

2

2
.

The equality holds for a+ t = 2
√

2at or (a, b, c) ∼
(
3±
√

8, 1, 0
)
.

∇

Example 1.7.8. Let a, b, c be non-negative real numbers. Prove that

1

a+ b
+

1

b+ c
+

1

c+ a
+

8

a+ b+ c
≥ 6√

ab+ bc+ ca
.

(Pham Kim Hung)

SOLUTION. Similarly to the previous proofs, we assume first that a ≥ b ≥ c and
denote

f(a, b, c) =
1

a+ b
+

1

b+ c
+

1

c+ a
+

8

a+ b+ c
− 6√

ab+ bc+ ca
.

Let t = b+ c, then we have

f(a, b, c)− f(a, t, 0) =
1

a+ b
+

1

a+ c
− 1

a+ b+ c
− 1

a
− 6√

ab+ bc+ ca
+

6√
a(b+ c)

≥ − c

a(a+ c)
+

6
(√
ab+ bc+ ca−

√
ab+ ac

)√
a(b+ c)(ab+ bc+ ca)

.
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Using ab+ bc+ ca ≤ (a+ c)2 and a(b+ c) ≤ 2ab, we get
√
ab+ bc+ ca−

√
ab+ ac√

a(b+ c)(ab+ bc+ ca)
=

bc√
a(b+ c)(ab+ bc+ ca) + a(b+ c)

√
ab+ bc+ ca

≥ bc

3ab
√
a(b+ c) + 2ab(a+ c)

=
c

a
(

3
√
a(b+ c) + 2(a+ c)

) .
Therefore

f(a, b, c)− f(a, t, 0) ≥ 6c

a
(

3
√
a(b+ c) + 2(a+ c)

) − c

a(a+ c)
.

Moreover, since a ≥ b ≥ c, we infer that

6(a+ c) = 4(a+ c) + 2(a+ c) ≥ 3

2
(a+ b+ c) + 2(a+ c) ≥ 3

√
a(b+ c) + 2(a+ c),

which means that f(a, b, c) ≥ f(a, t, 0). Furthermore, by AM-GM inequality, we con-
clude

f(a, t, 0) =
9

a+ t
+

1

a
+

1

t
− 6√

at

=
1√
at

(
9
√
at

a+ t
+
a+ t√
at
− 6

)
≥ 0.

This ends the proof. The equality holds for a + t = 3
√
at or (a, b, c) ∼(

7±
√

45

2
, 1, 0

)
.

∇
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1.8 Undesirable Conditions

We will consider now some symmetric inequalities different from every other in-
equalities we used to solve before. In these problems, variables are restricted by par-
ticular conditions which can’t have the solution a = b = c (so a = b = c can not
make up any case of equality). The common technique is to solve them using special
expressions and setting up equations involving them.

Example 1.8.1. Suppose that a, b, c are three positive real numbers satisfying

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
= 13.

Find the minimum value of

P = (a2 + b2 + c2)

(
1

a2
+

1

b2
+

1

c2

)
.

(Vasile Cirtoaje)

SOLUTION. Let now
x =

a

b
+
b

c
+
c

a
, y =

b

a
+
c

b
+
a

c
,

then we obtain that

x2 = 2y +
∑
cyc

a2

b2
; y2 = 2x+

∑
cyc

b2

a2
;

Because x+ y = 10, AM-GM inequality yields that

P − 3 = x2 + y2 − 2(x+ y) ≥ 1

2
(x+ y)2 − 2(x+ y) = 50− 20 = 30

therefore P ≥ 33 and minP = 33 with equality for

x = y ⇔
∑
cyc

a

b
=
∑
cyc

b

a
⇔ (a− b)(b− c)(c− a) = 0,

combined with the hypothesis (a+b+c)

(
1

a
+

1

b
+

1

c

)
= 10, we conclude thatP = 33

if and only if (a, b, c) ∼
(
2±
√

3, 1, 1
)

and permutations.

Comment. This approach is still effective for the general problem where 13 is re-
placed by an arbitrary real number k ≥ 9.

∇

Example 1.8.2. Let a, b, c be three positive real numbers such that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
= 16.
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Find the maximum value of

P = (a2 + b2 + c2)

(
1

a2
+

1

b2
+

1

c2

)
.

(Vasile Cirtoaje and Pham Kim Hung)

SOLUTION. First Solution. Taking into account an example in Volume I, we deduce
that

13−
√

5

2
≤
∑
cyc

a

b
≤ 13 +

√
5

2
;

13−
√

5

2
≤
∑
cyc

b

a
≤ 13 +

√
5

2
.

therefore (∑
cyc

a

b
−
∑
cyc

b

a

)2

+

(∑
cyc

a

b
+
∑
cyc

b

a

)2

≤ 5 + 132 = 174

⇒

(∑
cyc

a

b

)2

+

(∑
cyc

b

a

)2

≤ 87 ⇒
∑
cyc

a2

b2
+
∑
cyc

b2

a2
≤ 61

⇒

(∑
cyc

a2

)(∑
cyc

1

a2

)
≤ 64.

The maximum of P is 64, attained for
a

b
=
b

c
=

3±
√

5

2
or any permutation.

Second Solution. We denote x =
∑
cyc

a

b
, y =

∑
cyc

b

a
, m =

∑
cyc

a2

bc
and n =

∑
cyc

bc

a2
. We

certainly have x+ y = 13 and xy = 3 +m+ n. Moreover

x3 + y3 =
∑
sym

a3

b3
+ 6(m+ n) + 12 (?)

By AM-GM inequality, we have

(m+ n)2 ≥ 4mn = 4

(
3 +

∑
sym

a3

b3

)
.

Combining this result with (?), we deduce that

(m+ n)2 ≥ 12 + 4
(
x3 + y3 − 6(m+ n)− 12

)
Because x+ y = 13, we obtain

x3 + y3 = (x+ y)3 − 3xy(x+ y) = 133 − 39(3 +m+ n) = 2080− 39(m+ n)
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This yields that (with t = m+ n)

t2 ≥ −36 + 4(2080− 39t)− 24t ⇒ t2 + 180t− 8284 ≥ 0 ⇒ t ≥ 38.

Therefore m+ n ≥ 38 or xy ≥ 41. This result implies

(a2 + b2 + c2)

(
1

a2
+

1

b2
+

1

c2

)
= 3 + x2 + y2 − 2(x+ y)

= (x+ y)2 − 2(x+ y) + 3− 2xy

≤ 132 − 2 · 13 + 3− 2 · 41 = 64.

The equality holds if and only if m = n, or

∑
cyc

a2

bc
=
∑
cyc

bc

a2
⇔ (a2 − bc)(b2 − ca)(c2 − ab) = 0,

and in this case, it’s easy to conclude that the maximum of P is 64. The equality holds

if and only if
a

b
=
b

c
=

3±
√

5

2
up to permutation.

Comment. Both solutions above can still be used to solve the general problem in
which 16 is replaced by an arbitrary real number k ≥ 9.

∇

Example 1.8.3. Suppose that a, b, c are three positive real numbers satisfying that

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
= 16.

Find the minimum and maximum value of

P = (a4 + b4 + c4)

(
1

a4
+

1

b4
+

1

c4

)
.

SOLUTION. We denote x, y,m, n as in the previous problem and also denote

p =
∑
cyc

a2

b2
; q =

∑
cyc

b2

a2
;

The expression P can be rewritten as

P = 3 +
∑
cyc

a4

b4
= 3 + p2 + q2 − 2(p+ q).

The hypothesis yields that x+ y = 13. Moreover, we have

xy = 3 +m+ n (1) ; x2 + y2 = p+ q + 2(x+ y) (2) ;



c© GIL Publishing House. All rights reserved. 307

p2 + q2 =
∑
cyc

a4

b4
+ 2(p+ q) (3) ; pq = 3 +

∑
cyc

a4

b2c2
+
∑
cyc

b2c2

a4
(4) ;

m2 + n2 =
∑
cyc

a4

b2c2
+
∑
cyc

b2c2

a4
+ 2(m+ n) (5) ; x3 + y3 = mn+ 6(m+ n) + 9 (6) .

The two results (4) and (5) combined show that

pq = 3 +m2 + n2 − 2(m+ n) (7) ;

According to (1) and (2) and noticing that x+ y = 13, we have

p+ q = 132 − 2.13− 2(3 +m+ n) = 137− 2(m+ n)

The equation (6) shows that

133 − 39(3 +m+ n) = mn+ 6(m+ n) + 9 ⇒ mn = 2071− 45(m+ n)

⇒ pq = 3 + (m+ n)2 − 2mn− 2(m+ n) = t2 + 88t− 4139

where t = m+ n. Therefore P can be expressed as a function of t as

P = 2 + (p+ q − 1)2 − 2pq = 2 + 4(68− t)2 − 2(t2 + 88t− 4139)

= 2t2 − 720t+ 26776 = f(t)

Taking into account the preceding problem, we obtain 39.25 ≥ t = m + n ≥ 38 and

the conclusion follows: the minimum of P is f(39.25) =
12777

8
, with equality for

a = b =
(11±

√
105)c

4
or permutations; the maximum of P is f(38) = 2304, with

equality for
a

b
=
b

c
=

3±
√

5

2
or permutations.

∇

Example 1.8.4. Let a, b, c, d be positive real numbers such that

(a+ b+ c+ d)

(
1

a
+

1

b
+

1

c
+

1

d

)
= 20.

Prove that (
a2 + b2 + c2 + d2

)( 1

a2
+

1

b2
+

1

c2
+

1

d2

)
≥ 36.

(Vasile Cirtoaje, Pham Kim Hung, Phan Thanh Nam, VMEO 2006)

SOLUTION. For each triple of positive real numbers (x, y, z), we denote

F (x, y, z) =
x

y
+
y

z
+
z

x
;
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Clearly

F (x, y, z)2 = F (x2, y2, z2) + 2F (z, y, x) ; F (z, y, x)2 = F (z2, y2, x2) + 2F (x, y, z) .

The condition of the problem can be rewritten as∑
cyc

(F (a, b, c) + F (c, b, a)) = 32.

Our inequality is equivalent to∑
cyc

(
F (a2, b2, c2) + F (c2, b2, a2)

)
≥ 64

⇔
∑
cyc

(
F (a, b, c)2 − 2F (c, b, a) + F (c, b, a)− 2F (a, b, c)

)
≥ 64

⇔
∑
cyc

(
F 2(a, b, c) + F 2(c, b, a)

)
≥ 128.

Applying Cauchy-Schwarz inequality, we conclude

∑
cyc

(
F 2(a, b, c) + F 2(c, b, a)

)
≥ 1

8

(∑
cyc

(F (a, b, c) + F (c, b, a))

)2

=
322

8
= 128,

and the conclusion follows. The equality holds for

F (a, b, c) = F (c, b, a) = F (a, c, d) = F (d, c, a) = F (b, c, d) = F (d, c, b) = 4,

or equivalently (a, b, c, d) ∼

(
3±
√

5

2
;

3±
√

5

2
; 1 ; 1

)
and every permutation.

∇

Example 1.8.5. Suppose that a, b, c are three positive real numbers satisfying

(
a2 + b2 + c2

)(1

a
+

1

b
+

1

c

)2

= 36.

Prove the following inequality

(a+ b+ c)2
(

1

a2
+

1

b2
+

1

c2

)
> 34.

(Pham Kim Hung)

SOLUTION. As in the preceding problems, we denote

x =
∑
cyc

a

b
; y =

∑
cyc

b

a
; m =

∑
cyc

a2

bc
; n =

∑
cyc

bc

a2
;
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The hypothesis shows that

∑
cyc

a2

b2
+
∑
cyc

b2

a2
+ 2(x+ y) + 2m = 33 ⇒ x2 + y2 + 2m = 33.

We also have two relations (similar to the relations in the previous problem)

xy = 3 +m+ n, x3 + y3 = mn+ 6(m+ n) + 12

and therefore
x+ y =

√
x2 + y2 + 2xy =

√
39 + 2n

⇒ mn+ 6(m+ n) + 12 =
√

39 + 2n(30− n− 3m).

Denoting r =
√

39 + 2n, it follows that 2n = r2 − 39 and

m(r2 − 39) + 12m+ 6(r2 − 39) + 24 = r(99− r2 − 6m)

⇒ m =
210 + 99r − 6r2 − r3

r2 + 6r − 27

⇒ m− n =
210 + 99r − 6r2 − r3

r2 + 6r − 27
− r2 − 39

2
= f(r).

By Schur inequality, we have n+ 3 ≥ x+ y. Therefore

n+ 3 ≥
√

39 + 2n ⇒ n2 + 4n− 30 ≥ 0 ⇒ n ≥ −2 +
√

34 ⇒ r ≥
√

35 + 2
√

34.

On the other hand, because m− n = f(r) is a decreasing function of r, we conclude

m− n ≤ f
(√

35 + 2
√

34

)
< 1

and

(
a2 + b2 + c2

)(1

a
+

1

b
+

1

c

)2

− (a+ b+ c)2
(

1

a2
+

1

b2
+

1

c2

)
= 2(m− n) ≤ 2

⇒ (a+ b+ c)2
(

1

a2
+

1

b2
+

1

c2

)
> 34.

∇
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Article 4

Cyclic Inequalities of Degree 3

1.9 Getting Started

Hoo Joo Lee proposed the following result a long time ago (known as ”Symmetric
inequality of Degree 3” theorem, or SD3 theorem)

Theorem 2 (SD3). Let P(a,b,c) be a symmetric polynomial of degree 3. The following con-
ditions are equivalent to each other

• P (1, 1, 1), P (1, 1, 0), P (1, 0, 0) ≥ 0.

• P (a, b, c) ≥ 0 ∀a, b, c ≥ 0.

Although this theorem is quite strong, it is restricted to the field of symmet-
ric inequalities. With the help of our global derivative and the mixing all variables
method, we will figure out a more general formula to check cyclic inequalities which
have degree 3. It will be called ”Cyclic inequality of Degree 3” theorem, or CD3 the-
orem,

Theorem 3 (CD3). Let P (a, b, c) be a cyclic homogeneous polynomial of degree 3. The
inequality P ≥ 0 holds for all non-negative variables a, b, c if and only if

P (1, 1, 1) ≥ 0 ; P (a, b, 0) ≥ 0 ∀a, b ≥ 0;

PROOF. The necessary condition is obvious. We only need to consider the sufficient
condition. Assume that

P (1, 1, 1) ≥ 0 ; P (a, b, 0) ≥ 0 ∀a, b ≥ 0;

We will prove that for all a, b, c ≥ 0 we have

P (a, b, c) = m
∑
cyc

a3 + n
∑
cyc

a2b+ p
∑
cyc

ab2 + qabc ≥ 0.

The condition P (1, 1, 1) ≥ 0 yields that

m ≥ 0 ; 3m+ 3n+ 3p+ q ≥ 0 ;
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The condition P (a, b, 0) ≥ 0 ∀a, b ≥ 0 yields that (by choosing a = b = 1 and a =

1, b = 0)
P (1, 0, 0) = m ≥ 0 ; P (1, 1, 0) = 2m+ n+ p ≥ 0 .

Consider the inequality

m
∑
cyc

a3 + n
∑
cyc

a2b+ p
∑
cyc

ab2 + qabc ≥ 0.

Taking the global derivative, we get

3m

(∑
cyc

a2

)
+ n

(∑
cyc

a2 + 2
∑
cyc

ab

)
+ p

(∑
cyc

b2 + 2
∑
cyc

ab

)
+

(
q
∑
cyc

ab

)
≥ 0

or
(3m+ n+ p)

∑
cyc

a2 + (2n+ 2p+ q)
∑
cyc

ab ≥ 0.

Notice that 3m+ n+ p = m+ (2m+ n+ p) ≥ 0 and (3m+ n+ p) + (2n+ 2p+ q) =

3m+ 3n+ 3p+ q ≥ 0, so we deduce that

(3m+ n+ p)
∑
cyc

a2 + (2n+ 2p+ q)
∑
cyc

ab ≥ (3m+ n+ p)

(∑
cyc

a2 −
∑
cyc

ab

)
≥ 0.

According to the principle of the global derivative, the inequality P (a, b, c) ≥ 0 holds
if and only if it holds when min{a, b, c} = 0. Because the inequality is cyclic, we may
assume that c = 0. The conclusion follows immediately since P (a, b, 0) ≥ 0 ∀a, b ≥ 0.

Comment. 1. Hoo Joo Lee’s theorem can be regarded as a direct corollary of this
theorem for the symmetric case. Indeed, if n = p, the inequality

P (a, b, 0) = m(a3 + b3) + n(a2b+ b2a) ≥ 0

holds for all a, b ≥ 0 if and only if m + n ≥ 0 (this property is simple). Notice that
m+ n = P (1, 1, 0), so we get Ho Joo Lee’s inequality.

2. According to this theorem, we can conclude that, in order to check an arbitrary
cyclic inequality which has degree 3, it suffices to check it in two cases, when all
variables are equal and when one variable is 0. For the inequality F (a, b, 0) ≥ 0,
we can let b = 1 and change it to an inequality of one variable only (of degree 3).
Therefore, we can say that every cyclic inequality in three variables a, b, c of degree
3 is solvable.

∇

With the help of this theorem, we can prove many nice and hard cyclic inequal-
ities of degree 3. Polynomial inequalities will be discussed first and the fraction in-
equalities will be mentioned in the end of this article.
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1.10 Application for Polynomial Inequalities

Example 1.10.1. Let a, b, c be non-negative real numbers. Prove that

a3 + b3 + c3 +

(
3
3
√

4
− 1

)
abc ≥ 3

3
√

4
(a2b+ b2c+ c2a).

SOLUTION. Clearly, the above inequality is true if a = b = c. According to CD3
theorem, it suffices to consider the inequality in one case b = 1, c = 0. The inequality
becomes

a3 + 1 ≥ 3
3
√

4
a2,

which simply follows from AM-GM inequality

a3 + 1 =
a3

2
+
a3

2
+ 1 ≥ 3

3
√

4
a2.

The equality holds for a = b = c or a = 3
√

2, b = 1, c = 0 up to permutation.

∇

Example 1.10.2. Let a, b, c be non-negative real numbers with sum 3. Prove that

a2b+ b2c+ c2a+ abc ≤ 4.

SOLUTION. The inequality is equivalent to

27(a2b+ b2c+ c2a+ abc) ≤ 4(a+ b+ c)3.

Because this is a cyclic inequality and holds for a = b = c, we only need to consider
the case c = 0 due to CD3 theorem. In this case, the inequality becomes

24a2b ≤ 4(a+ b)3.

By AM-GM inequality, we have

(a+ b)3 =
(a

2
+
a

2
+ b
)3
≥ 27a2b

4
.

Therefore we are done. The equality holds for a = b = c or (a, b, c) ∼ (2, 1, 0).

∇

Example 1.10.3. Let a, b, c be non-negative real numbers. Prove that

4(a3 + b3 + c3) + 12(a2b+ b2c+ c2a) ≥ 15(ab2 + bc2 + ca2) + 3abc.
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SOLUTION. Because the inequality is cyclic and holds for a = b = c, according to
CD3 theorem, it is enough to consider the case c = 0. The inequality becomes

4(a3 + b3) + 12a2b ≥ 15ab2,

or
(2a− b)2(a+ 4b) ≥ 0,

which is obvious. The equality holds for a = b = c or (a, b, c) ∼ (1, 2, 0).

∇

Example 1.10.4. Let a, b, c be non-negative real numbers with sum 4. Prove that

5(ab2 + bc2 + ca2) + 3abc ≤ 36 + 3(a2b+ b2c+ c2a).

SOLUTION. Because the inequality is cyclic and holds for a = b = c =
4

3
, it suffices to

consider it in case c = 0 and a+ b = 4. We have to prove that

5ab2 − 3a2b ≤ 36

or
a(4− a)(5− 2a) ≤ 9.

Applying AM-GM inequality, we have the desired result

a(4− a)(5− 2a) =
1

3
· (3a) · (4− a) · (5− 2a) ≤ 1

81
(3a+ 4− a+ 5− 2a)3 = 9.

The equality holds for a = 1, b = 3, c = 0 and every permutation.

∇

Example 1.10.5. Let a, b, c be non-negative real numbers such that a+ b+ c = 3. For each
k ≥ 0, find the maximum value of

a2(kb+ c) + b2(kc+ a) + c2(ka+ b).

(Pham Kim Hung)

SOLUTION. Because the expression is cyclic, we can assume first that c = 0, a+ b = 3

and find the maximum value of

F = ka2b+ b2a.

For k = 1, we have F = ab(a + b) = 3ab ≤ 27

4
by AM-GM inequality. Otherwise,

assume that k 6= 1. We denote

f(a) = ka2(3− a) + a(3− a)2 = (1− k)a3 + 3(k − 2)a2 + 9a.
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We have
f ′(a) = 3(1− k)a2 + 6(k − 2)a+ 9.

Now we check the roots of the derivative and use that a ∈ [0, 3]

f ′(a) = 0 ⇔ a = a0 =
2− k −

√
k2 − k + 1

1− k
=

√
k2 − k + 1 + k − 2

k − 1
.

The maximum of f(a) is attained for a = a0 and

max
a∈[0,3]

f(a) = f(a0) =
2(k2 − k + 1)

(k − 1)2

(√
k2 − k + 1 + k − 2

)
+

3(k − 2)

k − 1
.

According to CD3 theorem, we conclude that the maximum of

a2(kb+ c) + b2(kc+ a) + c2(ka+ b)

is

min

{
3(k + 1) ;

2(k2 − k + 1)

(k − 1)2

(√
k2 − k + 1 + k − 2

)
+

3(k − 2)

k − 1

}
.

Comment. According to this proof and CD3 theorem, we also have the following
similar result

F Given non-negative real numbers a, b, c such that a+ b+ c = 3, for each k ≥ 0, prove
that

a2(kb+ c) + b2(kc+ a) + c2(ka+ b) +mabc ≥

min

{
3(k + 1) +m ;

2(k2 − k + 1)

(k − 1)2

(√
k2 − k + 1 + k − 2

)
+

3(k − 2)

k − 1

}
.

∇

Example 1.10.6. Let a, b, c be non-negative real numbers such that a+ b+ c = 3. For each
k ≥ 0, find the maximum and minimum value of

a2(kb− c) + b2(kc− a) + c2(ka− b).

(Pham Kim Hung)

SOLUTION. As in the preceding solutions, we will first consider the case c = 0. De-
note

ka2b− ab2 = ka2(3− a)− a(3− a)2 = −(k + 1)a3 + 3(k + 2)a2 − 9a = f(a),

then we get
f ′(a) = −3(k + 1)a2 + 6(k + 2)a− 9.

The equation f ′(a) = 0 has exactly two positive real roots (in [0, 3])

a1 =
k + 2−

√
k2 + k + 1

k + 1
; a2 =

k + 2 +
√
k2 + k + 1

k + 1
.
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Therefore, we infer that

min
a∈[0,3]

f(a) = f(a1) =
2(k2 + k + 1)

(k + 1)2

(
k + 2−

√
k2 + k + 1

)
− 3(k + 2)

k + 1
= m ;

max
a∈[0,3]

f(a) = f(a1) =
2(k2 + k + 1)

(k + 1)2

(
k + 2 +

√
k2 + k + 1

)
− 3(k + 2)

k + 1
= M .

The inequality is cyclic, and therefore, due to CD3 theorem, we conclude

min a2(kb− c) + b2(kc− a) + c2(ka− b) = min {3(k − 1) ;m} ;

max a2(kb− c) + b2(kc− a) + c2(ka− b) = max {3(k − 1) ;M} ;

Comment. According to this proof and CD3 theorem, we obtain a similar result

F Given a, b, c ≥ 0 such that a+ b+ c = 3 and for each k ≥ 0 and m ∈ R, we have

min{a2(kb− c) + b2(kc− a) + c2(ka− b) + rabc} = min {3(k − 1) + r ;m} ;

max{a2(kb− c) + b2(kc− a) + c2(ka− b) + rabc} = max {3(k − 1) + r ;M} .

∇

The following theorem is a generalization of the ”cyclic inequality of degree 3”
theorem for non-homogeneous inequalities.

Theorem 4 (CD3-improved). Let P (a, b, c) be a cyclic polynomial of degree 3.

P (a, b, c) = m
∑
cyc

a3 + n
∑
cyc

a2b+ p
∑
cyc

ab2 + qabc+ r
∑
cyc

a2 + s
∑
cyc

ab+ t
∑
cyc

a+ u.

The inequality P ≥ 0 holds for all non-negative variables a, b, c if and only if

P (a, a, a) ≥ 0 ; P (a, b, 0) ≥ 0 ∀a, b ≥ 0;

PROOF. We fix the sum a+ b+ c = A and prove that for all A ≥ 0 then

Q(a, b, c) = m
∑
cyc

a3 + n
∑
cyc

a2b+ p
∑
cyc

ab2 + qabc+
r

A

(∑
cyc

a2 + s
∑
cyc

ab

)(∑
cyc

a

)

+
t

A2

(∑
cyc

a

)3

+
u

A3

(∑
cyc

a

)3

≥ 0.

SinceQ(a, b, c) is a homogeneous and cyclic polynomial of degree 3, according to the
CD3 theorem, we can conclude that Q(a, b, c) ≥ 0 if and only if

R(a) = Q(a, a, a) ≥ 0 ;S(a, b) = Q(a, b, 0) ≥ 0 .
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Now, since both R(a) and S(a, b) are homogeneous polynomials we can normalize
and prove that R(A) ≥ 0 (assuming that a = A) and Q(a, b) ≥ 0 (assuming that
a + b = A). Since S(A) = P (a, a, a) ≥ 0 and S(a, b) = P (a, b, 0) ≥ 0 by hypothesis,
the theorem is proved completely.

∇

Here are some applications of this theorem.

Example 1.10.7. Let a, b, c be non-negative real numbers. Prove that

a2 + b2 + c2 + 2 +
4

3
(a2b+ b2c+ c2a) ≥ 3(ab+ bc+ ca).

(Pham Kim Hung)

SOLUTION. For a = b = c = t, the inequality becomes

4t3 − 6t2 + 2 ≥ 0 ⇔ 2(t− 1)2(2t+ 1) ≥ 0.

This one is obvious, so we are done. Equality holds for a = b = c = 1.

For c = 0, the inequality becomes

4

3
a2b+ a2 + b2 + 2 ≥ 3ab

or

f(a) =

(
4

3
b+ 1

)
a2 − 3b · a+ (b2 + 2) ≥ 0.

Since

∆f = (3b)2−4

(
4

3
b+ 1

)
(b2 + 2) ≤ 9b2−4 (b+ 1)

(
b2 + 1

)
= −4b3 + 5b2−4b−4 < 0,

the inequality is proved in this case as well. The conclusion follows immediately.

∇

Example 1.10.8. Let a, b, c be non-negative real numbers. Prove that

a2 + b2 + c2 + 2(a2b+ b2c+ c2a) + 12 ≥ 6(a+ b+ c) + ab+ bc+ ca.

(Pham Kim Hung)

SOLUTION. For a = b = c = t, the inequality becomes 6t3 + 12 ≥ 18t, or 6(t− 1)2(t+

2) ≥ 0, which is obvious. Therefore it suffices to prove the inequality in case c = 0.
In this case, we have to prove that

a2 + b2 + 2a2b+ 12 ≥ 6(a+ b)
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or
f(a) = a2(1 + 2b)− 6a+ (b2 − 6b+ 12) ≥ 0.

Since
∆
′

f = 9− (1 + 2b)(b2 − 6b+ 12) = −2b3 + 11b2 − 18b− 3 < 0,

so we are done. The equality holds for a = b = c = 1.

∇

Example 1.10.9. Let a, b, c be non-negative real numbers. Prove that

a2 + b2 + c2 + 3 +
1

6
(a2b+ b2c+ c2a+ 15abc) ≥ a+ b+ c+ 2(ab+ bc+ ca).

(Pham Kim Hung)

SOLUTION. If a = b = c, the inequality is obvious. If c = 0, it becomes

a2 + b2 + 3 +
a2b

6
≥ a+ b+ 2ab

or

a2
(

1 +
b

6

)
− (2b+ 1)a+ (b2 − b+ 3) ≥ 0.

It is easy to check that

∆ = (2b+ 1)2 − 4

(
1 +

b

6

)
(b2 − b+ 3) = −2

3
b3 +

2

3
b2 + 6b− 11.

Case b ≤ 8

5
. We have

∆ = −2

3

(
b3 − b2 − b+ 1

)
−
(

31

3
− 16b

3

)
< 0.

Case b ≥ 8

5
. We have

∆ = −
(

1

4
b3 − 6b+ 11

)
−
(

5

12
b3 − 2

3
b2
)
< 0.

Therefore ∆ < 0 in every case, and we are done. Equality holds for a = b = c = 1.

∇

Example 1.10.10. Let a, b, c be non-negative real numbers. Prove that

2(a3 + b3 + c3) + abc+ ab+ bc+ ca+ 2 ≥ 2(a2b+ b2c+ c2a) + a2 + b2 + c2 + a+ b+ c.

(Pham Kim Hung)
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SOLUTION. If a = b = c, the inequality is obvious, with equality for a = b = c = 1.
Therefore we can assume that c = 0, and the inequality becomes

2(a3 + b3) + ab+ 2 ≥ 2a2b+ a2 + b2 + a+ b.

We may assume that a ≥ b. Denote

f(a) = 2(a3 + b3) + ab+ 2− 2a2b− a2 − b2 − a− b.

If a ≥ 1 then

f ′(a) = 6a2 − 4ab+ b− 2a− 1 ≥ 2a2 − 3a+ 1 = (a− 1)(2a− 1) ≥ 0.

Therefore

f(a) ≥ f(b) = 2b3 − b2 − 2b+ 2 = 2(b− 1)2(b+ 1) + b2 > 0.

Therefore we may assume that a ≤ 1. It suffices to prove that

2(a3 + b3) + 2 ≥ ab+ a2 + b2 + a+ b.

Let x = a+ b, y = ab. The inequality becomes

2x(x2 − 3y) + 2 ≥ x2 − y + x

or
2x3 − x2 − x+ 2 + y(1− 6x) ≥ 0.

Since 0 ≤ y ≤ x2

4
, the previous inequality is proved if we can prove that

2x3 − x2 − x+ 2 ≥ 0 (1)

2x3 − x2 − x+ 2 +
x2

4
(1− 6x) ≥ 0 (2)

Inequalities (1) and (2) can be proved easily, so we are done. The equality holds if
and only if a = b = c = 1.

∇

The theorem ”Cyclic inequality of Degree 3” is a natural generalization of Hoo Joo
Lee’s theorem from symmetry to cyclicity (for expressions of three variables). Sim-
ilarly, we have a very nice generalization of Hoo Joo Lee’s theorem for symmetric
inequalities of 4 variables in degree 3. It is proved by the global derivative as well.

Proposition 1. Let P (a, b, c, d) be a symmetric polynomial of degree 3. The inequality P ≥
0 holds for all non-negative variables a, b, c, d if and only if

P (1, 1, 1, 1) ≥ 0 ; P (1, 1, 1, 0) ≥ 0 ; P (1, 1, 0, 0) ≥ 0 ; P (1, 0, 0, 0) ≥ 0 0
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SOLUTION. The necessary condition is obvious. To prove the sufficient condition, we
will use Hoo Joo Lee’s theorem. WLOG, assume that

P (a, b, c, d) = α
∑
cyc

a3 + β
∑
cyc

a2(b+ c+ d) + 6γ
∑
cyc

abc.

Taking the derivative, we get the following polynomial

Q(a, b, c, d) = (3α+ 3β)
∑
cyc

a2 + (2β + 6γ)
∑
cyc

a(b+ c+ d).

Clearly, Q ≥ 0 because
∑
cyc

a2 ≥ 1

3

∑
cyc

a(b+ c+ d), 3α+ 3β =
3

2
P (1, 1, 0, 0) ≥ 0 and

(α+ 3β) + 3(2β + 6γ) = 3(α+ 3β + 6γ) =
3

4
P (1, 1, 1, 1) ≥ 0.

Since Q ≥ 0, according to the principle of the global derivative method and by the
method of mixing all variables, it suffices to prove that

P (a, b, c, 0) ≥ 0.

Since P (a, b, c, 0) is a symmetric polynomial in a, b, c, we have the desired result due
to Hoo Joo Lee’s theorem.

∇

Proposition 2. Let P (x1, x2, ..., xn) be a third-degree symmetric polynomial

P = α

n∑
i=1

x3i + β
∑
i 6=j

x2ixj + γ
∑
i 6=j 6=k

xixjxk

such that 3α+(n−1)β ≥ 0. The inequality P (x1, x2, ..., xn) ≥ 0 holds for all non-negative
variables x1, x2, ..., xn if and only if

P (1, 0, 0, ..., 0) ≥ 0 ; P (1, 1, 0, 0, ..., 0) ≥ 0 ; ...; P (1, 1, ..., 1, 0) ≥ 0 ; P (1, 1, 1, ..., 1) ≥ 0 .

PROOF. To prove this problem, we use induction. Assuming that the theorem is
proved already for n − 1 variables, we have to prove it for n variables. Generally,
the polynomial P (x1, x2, ..., xn) can be expressed in the following form

P = α

n∑
i=1

x3i + β
∑
i6=j

x2ixj + γ
∑
i 6=j 6=k

xixjxk.

Taking the global derivative, we get the polynomial

Q = 3α

n∑
i=1

x2i + (n− 1)β

n∑
i=1

x2i + 2β
∑
i 6=j

xixj + 3(n− 2)γ
∑
i6=j

xixj

= (3α+ (n− 1)β)

n∑
i=1

x2i + (2β + 3(n− 2)γ)
∑
i6=j

xixj .
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Moreover, since P (1, 0, 0, ..., 0) ≥ 0, P (1, 1, 0, 0, ..., 0) ≥ 0, we get

P (1, 0, 0, ..., 0) = α ≥ 0 ;

Due to AM-GM inequality, we get

n∑
i=1

x2i ≥
1

n− 1

∑
i 6=j

xixj .

Since P (1, 1, 1, ..., 1) ≥ 0, we get

P (1, 1, ..., 1) = nα+ n(n− 1)β + n(n− 1)(n− 2)γ ≥ 0

⇒ α+ (n− 1)β + (n− 1)(n− 2)γ ≥ 0

⇒ 3α+ (n− 1)β

n− 1
+ (2β + 3(n− 2)γ) ≥ 0.

Therefore

Q ≥
(

3α+ (n− 1)β

n− 1

) n∑
i=1

x2i −
∑
i 6=j

xixj

 .

By the principle of the global derivative and the mixing all variables method,
we infer that, in order to prove P (x1, x2, ..., xn) ≥ 0, it suffices to prove
P (x1, x2, ..., xn−1, 0) ≥ 0. Notice that 3α+ (n− 1)β ≥ 0 ; α ≥ 0, so 3α+ (n− 2)β ≥ 0.
The conclusion follows immediately by induction.

∇

Example 1.10.11. Let a, b, c, d be non-negative real numbers. Prove that

4(a3 + b3 + c3 + d3) + 15(abc+ bcd+ cda+ dab) ≥ (a+ b+ c+ d)3.

SOLUTION. Because this is a third-degree symmetric inequality of four variables,
according to the generalization of the SD3 theorem, it suffices to check this inequality
in case a = b = c = d = 1 or a = 0, b = c = d = 1 or a = b = 0, c = d = 1

or a = b = c = 0, d = 1. They are all obvious, so we have the desired result. The
equality holds for a = b = c = d or a = b = c, d = 0 up to permutation.

∇

Example 1.10.12. Let a, b, c, d be non-negative real numbers such that a + b + c + d = 4.
Prove that

a3 + b3 + c3 + d3 + 10(ab+ bc+ cd+ da+ ac+ bd) ≤ 64.



c© GIL Publishing House. All rights reserved. 321

SOLUTION. The inequality can be rewritten as (homogeneous form)

a3 + b3 + c3 + d3 +
5

2
(a+ b+ c+ d)(ab+ bc+ cd+ da+ ac+ bd) ≤ (a+ b+ c+ d)3.

It is easy to check that the inequality holds for (a, b, c, d) = (1, 1, 1, 1) or (1, 1, 1, 0) or
(1, 1, 0, 0) or (1, 0, 0, 0) (and it is an equality for (1, 1, 1, 1), (1, 0, 0, 0)). Therefore, the
inequality is proved due to the previous proposition, with equality for (1, 1, 1, 1) and
(4, 0, 0, 0).

∇

Example 1.10.13. Let a, b, c, d be non-negative real numbers such that a + b + c + d = 4.
Prove that

a3 + b3 + c3 + d3 +
14

3
(ab+ bc+ cd+ da+ ac+ bd) ≥ 32.

SOLUTION. The inequality can be rewritten as (homogeneous form)

a3 + b3 + c3 + d3 +
7

6
(a+ b+ c+ d)(ab+ bc+ cd+ da+ ac+ bd) ≥ 1

2
(a+ b+ c+ d)3.

By the previous proposition/theorem, it suffices to consider this inequality in the
cases (a, b, c, d) ∈ {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}. In these cases, the in-
equality is clearly true, with equality for (1, 1, 1, 1) and (1, 1, 1, 0). Therefore the initial

inequality is proved successfully, with equality for (1, 1, 1, 1) and
(

4

3
,

4

3
,

4

3
, 0

)
.

∇

Example 1.10.14. Let a1, a2, ..., an (n ≥ 3) be non-negative real numbers. Prove that

n− 1

2

n∑
i=1

a3i +
3

n− 2

∑
cyc

a1a2a3 ≥
∑
cyc

a1a2(a1 + a2).

(Vasile Cirtoaje)

SOLUTION. In this problem, we have α =
n− 1

2
and β = −1. Because

3α+ (n− 1)β =
3(n− 1)

2
− (n− 1) =

n− 1

2
> 0,

according to the previous theorem (generalization for n variables), we get that it
suffices to consider the initial inequality in case some of the variables a1, a2, ..., an
are 1 and the other are 0. For 1 ≤ k ≤ n, assume that a1 = a2 = ... = ak = 1 and
ak+1 = ak+2 = ... = ak+n = 0, then the inequality becomes

k(n− 1)

2
+

3

n− 2
· k(k − 1)(k − 2)

6
≥ k(k − 1)
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⇔ n− 1 +
(k − 1)(k − 2)

n− 2
≥ 2(k − 1)

⇔ (n− k)(n− k + 1) ≥ 0.

This inequality is obvious because k ∈ {1, 2, ..., n}, and we are done. Equality holds
for a1 = a2 = ... = an or a1 = a2 = ... = an−1, an = 0.

∇
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1.11 Applications for Fraction Inequalities

In this section, we will return to the theorem CD3 presented before. Starting from
CD3 we will obtain the following result (”Cyclic inequalities of degree 3 for frac-
tions”), a very general and useful result in proving fractional inequalities.

Proposition 3. Consider the following expression of non-negative real numbers a, b, c

F (a, b, c) =
ma+ nb+ pc

αa+ βb+ γc
+
mb+ nc+ pa

αb+ βc+ γa
+
mc+ na+ pb

αc+ βa+ γb
,

in which a, b, c ∈ R and α, β, γ ∈ R+. The inequality F (a, b, c) ≥ k holds for all a, b, c ≥ 0

if and only if F (1, 1, 1) ≥ k and F (a, b, 0) ≥ k for all a, b ≥ 0.

PROOF. It is easy to see that this proposition is directly obtained from the theorem
CD3. Indeed, consider the expression

G(a, b, c) =
∑
cyc

(ma+ bp+ pc) (αb+ βc+ γa) (αc+ βa+ γb)− k
∏
cyc

(αa+ βb+ γc) .

By hypothesis, we have G(1, 1, 1) ≥ 0 and G(a, b, 0) ≥ 0. Moreover, G is a cyclic
polynomial of degree 3. The conclusion follows from the theorem CD3 instantly.

∇

According to this propostion, we can make up a lot of beautiful and hard inequal-
ities. Here are some of them.

Example 1.11.1. Let a, b, c be non-negative real numbers. Prove that

a+ 2b

c+ 2b
+
b+ 2c

a+ 2c
+
c+ 2a

b+ 2a
≥ 3.

(Pham Kim Hung, Volume I)

SOLUTION. The inequality is cyclic and holds for a = b = c, so, according to the
previous theorem, we can assume that b = 1, c = 0. In this case, we have to prove
that

a+ 2

2
+

1

a
+

2a

1 + 2a
≥ 3

⇔ a

2
+

a+ 1

a(1 + 2a)
≥ 1.

Applying AM-GM inequality for the left-hand expression, we get

LHS ≥

√
2a(1 + a)

a(1 + 2a)
≥ 1.

That means, the inequality holds for c = 0. The conclusion follows immediately.

∇
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Example 1.11.2. Let a, b, c be non-negative real numbers. For each k ≥ 0, find the minimum
of the expression

a+ kb

c+ kb
+
b+ kc

a+ kc
+
c+ ka

b+ ka
.

(Pham Kim Hung, Volume I)

SOLUTION. For b = 1, c = 0, the expression becomes

f(a) =
a+ k

k
+

1

a
+

ka

1 + ka
= 2 +

a

k
+

1

a
− 1

1 + ka
.

If k ≤ 1 then, according to AM-GM inequality, we have

f(a) ≥ 2 +
2√
k
− 1 ≥ 3.

We will now consider the main case, when k ≥ 1. Clearly,

f(a) = 2 +
a

k
+

1

a
− 1

1 + ka
≥ 2 +

a

k
> 2.

However, 2 is not the minimal value of f(a). To find this value, we have to use deriva-
tives. We have first

f ′(a) =
1

k
− 1

a2
+

k

(1 + ka)2
.

The equation f ′(a) = 0 is equivalent to

k2a4 + 2ka3 − (k3 + k2 − 1)a2 − 2k2a− k = 0.

It is easy to check that the equation has exactly one real root a0, so

min f(a) = f(a0) = 2 +
a0
k

+
1

a0
− 1

1 + ka0
.

According to the CD3 theorem (for fractions), we conclude that

min

{
a+ kb

c+ kb
+
b+ kc

a+ kc
+
c+ ka

b+ ka

}
= min

{
3 ; 2 +

a0
k

+
1

a0
− 1

1 + ka0

}
.

Comment. 1. Because f(a) ≥ 2 ∀a > 0, we conclude that

F For all non-negative real numbers a, b, c, k

a+ kb

c+ kb
+
b+ kc

a+ kc
+
c+ ka

b+ ka
≥ 2.

2. We can try some estimations for a0. Clearly, a0 ≤
√
k and a0 ≥

√
k − 1, so

2 +
a0
k

+
1

a0
− 1

1 + ka0
≥ 2√

k
− 1

1 + k
√
k − 1

,
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⇒ min

{
a+ kb

c+ kb
+
b+ kc

a+ kc
+
c+ ka

b+ ka

}
= min

{
3 ; 2 +

2√
k
− 1

1 + k
√
k − 1

}
∀k > 1,

and we get a very nice result

F For all non-negative real numbers a, b, c

a+
√

7b

c+
√

7b
+
b+
√

7c

a+
√

7c
+
c+
√

7a

b+
√

7a
≥ 3.

∇

Example 1.11.3. Let a, b, c be non-negative real numbers. Prove that

1 ≤ a+ b

a+ 4b+ c
+

b+ c

b+ 4c+ a
+

c+ a

c+ 4a+ b
≤ 4

3
.

(Pham Kim Hung)

SOLUTION. For b = 1, c = 0, the inequality becomes

a+ 1

a+ 4
+

1

a+ 1
+

a

4a+ 1
≥ 1 (?)

and
a+ 1

a+ 4
+

1

a+ 1
+

a

4a+ 1
≤ 4

3
(??)

The inequality (?) is equivalent to (after expanding)

a3 − 3a2 + 7a+ 5 ≥ 0,

which is obvious because

a3 − 3a2 + 7a2 ≥
(

2
√

7− 3
)
a2 ≥ 0.

The inequality (??) is equivalent to (after expanding)

a3 + 20a2 − 3a+ 1 ≥ 0,

which is obvious, too, because

20a2 − 3a+ 1 ≥
(

2
√

20− 3
)
a ≥ 0.

Because the inequality holds if one of a, b, c is equal to 0, it is also true if a = b = c.
Therefore, we have the conclusion due to the ”Cyclic inequalities of degree 3- theo-
rem for fractions”. Only the left-hand inequality has an equality case for a = b = c.

∇
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Example 1.11.4. Let a, b, c be non-negative real numbers. Prove that√
a

4a+ 4b+ c
+

√
b

4b+ 4c+ a
+

√
c

4c+ 4a+ b
≤ 1.

(Pham Kim Hung, Volume I)

SOLUTION. It suffices to prove that

a

4a+ 4b+ c
+

b

4b+ 4c+ a
+

c

4c+ 4a+ b
≤ 1

3
(?)

For c = 0, the inequality becomes

a

4a+ 4b
+

b

4b+ a
≤ 1

3

or (after expanding)
(a− 2b)2 ≥ 0.

Therefore we are done according to the proposition. In (?), the equality holds for
a = b = c or (a, b, c) ∼ (2, 1, 0). In the initial inequality, the equality only holds for
a = b = c.

∇

Example 1.11.5. Let a, b, c be non-negative real numbers. For each k, l ≥ 0, find the maxi-
mal and minimal value of the expression

a

ka+ lb+ c
+

b

kb+ lc+ a
+

c

kc+ la+ b
.

(Pham Kim Hung)

SOLUTION. First we will examine the expression in case b = 1, c = 0. Denote

f(a) =
a

ka+ l
+

1

k + a
,

then we get

f ′(a) =
l

(ka+ l)2
− 1

(k + a)2
.

The equation f ′(a) = 0 has exactly one positive real root a =
√
l. So, if l > k2 then

min f(a) = f
(√

l
)

=
2

k +
√
l

;

sup f(a) = lim
a→+∞

f(a) =
1

k
.

Otherwise, if l < k2 then

min f(a) = f(0) =
1

k
;
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max f(a) = f
(√

l
)

=
2

k +
√
l
.

For l = k2 then we have

f(a) =
a

ka+ k2
+

1

k + a
=

1

k
.

Denote by

F =
a

ka+ lb+ c
+

b

kb+ lc+ a
+

c

kc+ la+ b
.

According to the previous results, we have the conclusion

minF = min

{
3

k + l + 1
;

1

k
;

2

k +
√
l

}
;

supF = max

{
3

k + l + 1
;

1

k
;

2

k +
√
l

}
;

Comment. According to this general result, we can write down a lot of nice inequal-
ities such as

F Given non-negative real numbers a, b, c and for all k ≥ 1, prove that

3

k2 + k + 1
≤ a

ka+ k2b+ c
+

b

kb+ k2c+ a
+

c

kc+ k2a+ b
≤ 1

k
.

F Given non-negative real numbers a, b, c, and for all k ≥ 0, prove that

a

ka+ (2k − 1)b+ c
+

b

kb+ (2k − 1)c+ a
+

c

kc+ (2k − 1)a+ b
≥ 1

k
.

F Given non-negative real numbers a, b, c, and for all k ≥ 0, prove that

(k2 − k + 1)a

(2k2 − 3k + 2)a+ k2b+ c
+

(k2 − k + 1)b

(2k2 − 3k + 2)b+ k2c+ a
+

(k2 − k + 1)c

(2k2 − 3k + 2)c+ k2a+ b
≤ 1.

In the last inequality, by letting k = 3, we obtain the following result

F Given non-negative real numbers a, b, c, prove that

a

11a+ 9b+ c
+

b

11b+ 9c+ a
+

c

11c+ 9a+ b
≤ 1

7
.

Notice that the equality holds for a = b = c or (a, b, c) ∼ (3, 1, 0).

∇

Example 1.11.6. Let a, b, c be non-negative real numbers. Prove that

3a+ 2b+ c

a+ 2b+ 3c
+

3b+ 2c+ a

b+ 2c+ 3a
+

3c+ 2a+ b

c+ 2a+ 3b
≥ 3.
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SOLUTION. First we have to consider the inequality in case b = 1, c = 0. In this case,
the inequality becomes

3a+ 2

a+ 2
+

3 + a

3a+ 1
+

2a+ 1

2a+ 3
≥ 3

⇔ 2a

a+ 2
+

3 + a

3a+ 1
≥ 2a+ 5

2a+ 3
,

or (after directly expanding)

4a3 + 3a2 − 3a+ 4 ≥ 0.

This last inequality is obvious by AM-GM inequality

3a2 − 3a+ 4 ≥
(

2
√

12− 3
)
a ≥ 0.

The inequality is true in case abc = 0. It is also obvious if a = b = c. According to the
main theorem, we have the desired result.

∇

Example 1.11.7. Let a, b, c be non-negative real numbers with sum 3. Prove that

a+ b

1 + b
+
b+ c

1 + c
+
c+ a

1 + a
≥ 3.

SOLUTION. The inequality is equivalent to (homogeneous form)

a+ b

b+ a+b+c
3

+
b+ c

c+ a+b+c
3

+
c+ a

a+ a+b+c
3

≥ 3.

Because this problem is cyclic, homogeneous and holds if a = b = c, we can assume
that c = 0 and a+ b = 3. In this case, we have to prove that

3

1 + b
+ b+

a

1 + a
≥ 3

⇔ 3

4− a
+

a

1 + a
≥ a

⇔ a3 − 4a2 + 3a+ 3 ≥ 0

⇔ a(a− 2)2 + (3− a) ≥ 0

which is obvious because a ∈ [0, 3]. The equality holds for only one case, a = b = c =

1.
∇
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Article 5
Integral and Integrated Inequalites

1.12 Getting started

As a matter of fact, using integrals in proving inequalities is a new preoccupation in
elementary mathematics. Although integrals are mainly used in superior mathemat-
ics, only the following results are used in this article

1. If f(x) ≥ 0 ∀x ∈ [a, b] then
∫ b
a
f(x)dx ≥ 0.

2. If f(x) ≥ g(x) ∀x ∈ [a, b] then
∫ b
a
f(x)dx ≥

∫ b
a
g(x)dx.

Example 1.12.1. Let a1, a2, ..., an be real numbers. Prove that
n∑

i,j=1

aiaj
i+ j

≥ 0.

(Romania MO)

SOLUTION. This problem shows the great advantage of the integral method because
other solutions are almost impossible. Indeed, consider the following function

f(x) =

n∑
i,j=1

aiajx
i+j−1 =

1

x

 n∑
i,j=1

aix
i

2

.

So we have f(x) ≥ 0 for all x ≥ 0, therefore
∫ 1

0
f(x)dx ≥ 0. Notice that∫ 1

0

f(x)dx =

n∑
i,j=1

aiaj
i+ j

,

so the desired result follows immediately. We are done.

∇

Example 1.12.2. Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

(ab+ bc+ ca)

(
a

b2 + b
+

b

c2 + c
+

c

a2 + a

)
≥ 3

4
.
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(Gabriel Dospinescu)

SOLUTION. We will prove first the following result: for all x ≥ 0

a

(x+ b)2
+

b

(x+ c)2
+

c

(x+ a)2
≥ 1

(x+ ab+ bc+ ca)2
(?)

Indeed, by Cauchy-Schwarz inequality, we obtain(∑
cyc

a

(x+ b)2

)(∑
cyc

a

)
≥

(∑
cyc

a

x+ b

)2

,

or equivalently (because a+ b+ c = 1)

∑
cyc

a

(x+ b)2
≥

(∑
cyc

a

x+ b

)2

(1)

Applying Cauchy-Schwarz inequality again(∑
cyc

a

x+ b

)(∑
cyc

a(x+ b)

)
≥ (a+ b+ c)2,

or equivalently ∑
cyc

a

x+ b
≥ 1

x+ ab+ bc+ ca
(2)

Results (1) and (2) combined show (?) immediately. According to (?), we have∫ 1

0

(
a

(x+ b)2
+

b

(x+ c)2
+

c

(x+ a)2

)
≥
∫ 1

0

(
1

(x+ ab+ bc+ ca)2

)
,

or
a

b2 + b
+

b

c2 + c
+

c

a2 + a
≥ 1

(ab+ bc+ ca)(1 + ab+ bc+ ca)
,

and the problem is solved by the simple observation that ab+ bc+ ca ≤ 1

3
.

∇

Example 1.12.3. Let a, b, c be positive real numbers. Prove that

1

b(1 + ab)
+

1

c(1 + bc)
+

1

a(1 + ca)
≥ 1

3
√
abc
(

1 +
3
√
a2b2c2

) (1)

(Pham Kim Hung)
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SOLUTION. Taking into account example ??, we have

a

(x+ ab)2
+

b

(x+ bc)2
+

c

(x+ ca)2
≥ 3 3

√
abc(

x+
3
√
a2b2c2

)2 .
Integrating on [0, 1], we get

∑
cyc

∫ 1

0

a

(x+ ab)2
≥
∫ 1

0

3 3
√
abc(

x+
3
√
a2b2c2

)2
or

1

b(1 + ab)
+

1

c(1 + bc)
+

1

a(1 + ca)
≥ 3

3
√
abc
(

1 +
3
√
a2b2c2

) .
Comment. 1. By integrating on [0, abc], we obtain the following result

F Let a, b, c be positive real numbers. Prove that

a

b(1 + bc)
+

b

c(1 + bc)
+

c

a(1 + ab)
≥ 3

1 + 3
√
abc

(2)

2. By integrating on [0, 3
√
abc], we obtain the following result

F Let a, b, c be positive real numbers. Prove that

1

b( 3
√
abc+ bc)

+
1

c( 3
√
abc+ bc)

+
1

a( 3
√
abc+ ab)

≥ 3

abc+
3
√
a2b2c2

(3)

3. Letting abc = 1 in each of these inequalities, we obtain the following result

F Let a, b, c be positive real numbers such that abc = 1. Prove that

1

a(1 + ab)
+

1

b(1 + bc)
+

1

c(1 + ca)
≥ 3

2
(4)

4. These inequalities can be solved by letting a =
kx

y
, b =

ky

z
, c =

kz

x
.



332 — c© GIL Publishing House. All rights reserved. —

1.13 Integrated Inequalities

The main idea of this method and is hidden in the following example proposed by
Gabriel Dospinescu in Mathlinks Forum.

Example 1.13.1. Let a, b, c be positive real numbers. Prove that

1

4a
+

1

4b
+

1

4c
+

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3

3a+ b
+

3

3b+ c
+

3

3c+ a
.

(Gabriel Dospinescu)

SOLUTION. There seems to be no purely algebraic solution to this hard inequality,
however, the integral method makes up a very impressive one.

According to a well-known inequality (see problem ?? in volume I), we have

(x2 + y2 + z2)2 ≥ 3(x3y + y3z + z3x).

Denote x = ta, y = tb, z = tc, then this inequality becomes(
t2a + t2b + t2c

)2 ≥ 3
(
t3a+b + t3b+c + t3c+a

)
.

Integrating both sides on [0, 1], we deduce that∫ 1

0

1

t

(
t2a + t2b + t2c

)2
dt ≥ 3

∫ 1

0

1

t

(
t3a+b + t3b+c + t3c+a

)
dt,

and the desired result follows immediately

1

4a
+

1

4b
+

1

4c
+

1

a+ b
+

1

b+ c
+

1

c+ a
≥ 3

3a+ b
+

3

3b+ c
+

3

3c+ a
.

We are done. The equality occurs if and only if a = b = c.

∇

This is a very ingenious and unexpected solution! The idea of replacing x, y, z

with x = ta, y = tb, z = tc changes the initial inequality completely! This method can
produce a lot of beautiful inequalities such as the ones that will be shown right now.

Example 1.13.2. Let a, b, c be positive real numbers. Prove that

1

3a
+

1

3b
+

1

3c
+

3

a+ b+ c
≥ 1

2a+ b
+

1

2b+ c
+

1

2c+ a
+

1

2b+ a
+

1

2c+ b
+

1

2a+ c
.

SOLUTION. Starting from Schur inequality, we have

x3 + y3 + z3 + 3xyz ≥ xy(x+ y) + yz(y + z) + zx(z + x).
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Letting now x = ta, y = tb, z = tc, the above inequality becomes

1

t

(
t3a + t3b + t3c + 3ta+b+c

)
≥ 1

t

(
ta+b(ta + tb) + tb+c(tb + tc) + tc+a(tc + ta)

)
.

Integrating both sides on [0, 1], we have the desired result immediately.

∇

Example 1.13.3. Let a, b, c be positive real numbers. Prove that

1

a
+

1

b
+

1

c
+

5

3a+ b
+

5

3b+ c
+

5

3c+ a
≥ 9

a+ 3b
+

9

b+ 3c
+

9

c+ 3a
.

(Pham Kim Hung)

SOLUTION. Let k =
5

4
. We start from the following inequality

x4 + y4 + z4 + k(x3y + y3z + z3x) ≥ (1 +
√

2)(xy3 + yz3 + zx3) (1)

Denoting x = ta, y = tb, z = tc, we obtain∑
cyc

t4a−1 + k
∑
cyc

t3a+b−1 ≥ (1 + k)
∑
cyc

ta+3b−1.

Integrating both sides on [0, 1], we get the desired result.

Finally, we have to prove the inequality (1) with the help of the global derivative and
the mixing all variables method. Taking the global derivative, it becomes

4
∑
cyc

x3 + k

(
3
∑
cyc

x2y +
∑
cyc

x3

)
≥ (1 + k)

(∑
cyc

y3 + 3
∑
cyc

xy2

)

or
4
∑
cyc

x3 + 3k
∑
cyc

x2y ≥ 3 (1 + k)
∑
cyc

xy2.

Since this is a cyclic inequality of degree 3, we may assume that z = 0 and we should
prove next that

4(x3 + y3) + 3kx2y ≥ 3 (1 + k)xy2.

This follows from AM-GM inequality immediately since

4y3 + 3kx2y ≥ 4
√

3kxy2 ≥ 3 (1 + k)xy2.

Then we only need to prove (1) in case y = 1, z = 0. In this case, (1) becomes

x4 + 1 + kx3 ≥ (1 + k)x.
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Denote f(x) = x4 + kx3 − (1 + k)x+ 1, then we get

f ′(x) = 4x3 + 3kx2 − (1 + k) .

This function has exactly one positive real root x = x0 ≈ 0.60406, therefore

f(x) ≥ f(x0) ≈ 0.05 > 0.

∇

Example 1.13.4. Let a, b, c be positive real numbers. Prove that

1

a
+

1

b
+

1

c
+

8

a+ b+ c
≥ 17

3

(
1

2a+ b
+

1

2b+ c
+

1

2c+ a

)
.

(Pham Kim Hung)

SOLUTION. Let k =
8

9
, then we need to prove that

1

3a
+

1

3b
+

1

3c
+

3k

a+ b+ c
≥ (k + 1)

(
1

2a+ b
+

1

2b+ c
+

1

2c+ a

)
.

According to example 1.10.1, we have

x3 + y3 + z3 + 3kxyz ≥ (k + 1)
(
x2y + y2z + z2x

)
(?)

Denote x = ta, y = tb, z = tc, then the previous inequality is transformed to

t3a−1 + t3b−1 + t3c−1 + 3kta+b+c−1 ≥ (k + 1)
(
t2a+b−1 + t2b+c−1 + tc+a−1

)
.

We conclude that∫ 1

0

(
t3a−1 + t3b−1 + t3c−1 + 3kta+b+c−1

)
dt ≥ (k + 1)

∫ 1

0

(
t2a+b−1 + t2b+c−1 + tc+a−1

)
dt

⇒ 1

3a
+

1

3b
+

1

3c
+

8

3(a+ b+ c)
≥ 17

9

(
1

2a+ b
+

1

2b+ c
+

1

2c+ a

)
,

which is exactly the desired result. The equality holds for a = b = c.

∇

According to these examples and their solutions, we realize that each fractional
inequality has another corresponding inequality. They stand in couples - primary
and integrated inequalities - if the primary one is true, the integrated one is true,
too (but not vice versa). Yet if you still want to discover more about this interesting
relationship, the following examples should be helpful.
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Example 1.13.5. Let a, b, c be positive real numbers. Prove that

1

a
+

1

b
+

1

c
+

3

a+ b+ c
≥ 4

5a+ b
+

4

5b+ c
+

4

5c+ a
+

4

5b+ a
+

4

5c+ b
+

4

5a+ c
.

SOLUTION. We can construct it from the primary inequality

a6 + b6 + c6 + a2b2c2 ≥ 2

3

(
a5(b+ c) + b5(c+ a) + c5(a+ b)

)
.

∇

Example 1.13.6. Let a, b, c, d be positive real numbers with sum 4. Prove that

1

a
+

1

b
+

1

c
+

1

d
≥ 8

(a+ b)(c+ d)
+

8

(b+ c)(d+ a)
+

8

(c+ a)(b+ d)
− 8

a+ b+ c+ d
.

SOLUTION. It is easy to realize that this result is obtained from Turkevici’s inequality

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + b2c2 + c2d2 + d2a2 + a2c2 + b2d2.

∇

Example 1.13.7. Let a, b, c be positive real numbers. Prove that

1

4a
+

1

4b
+

1

4c
+

1

3a+ b
+

1

3b+ c
+

1

3c+ a
≥ 2

a+ 3b
+

2

b+ 3c
+

2

c+ 3a
.

(Vasile Cirtoaje)

SOLUTION. We use the following familiar result (shown in the first volume)

a4 + b4 + c4 + a3b+ b3c+ c3a ≥ 2(ab3 + bc3 + ca3)

to deduce the desired result. The equality holds for a = b = c.

∇

Example 1.13.8. Let a, b, c be positive real numbers. Prove that

4

a
+

4

b
+

4

c
+

36

2a+ b
+

36

2b+ c
+

36

2c+ a
≥ 45

a+ 2b
+

45

b+ 2c
+

45

c+ 2a
+

9

a+ b+ c
.

SOLUTION. We use the following familiar result

27(ab2 + bc2 + ca2 + abc) ≤ 4(a+ b+ c)3

to deduce the desired result. Equality holds for only a = b = c.

∇
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Article 6

Two Improvements of the Mixing Variables
Method

1.14 Mixing Variables by Convex Functions

Using convex functions is a very well-known approach in proving inequalities, so it
would really be a mistake not to discuss them here. First, I want to return to a very
familiar inequality from the previous chapter, which can be proved in six different
ways with SOS method, SMV theorem, UMV theorem, the global derivative and
also using the general induction method and the nSMV theorem (in the next section).
We are talking about Turkevici’s inequality

Example 1.14.1. Let a, b, c, d be non-negative real numbers. Prove that

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2.

Analysis. As a matter of fact, SMV theorem gives a ”one-minute” solution; however,
we sometimes don’t want to use SMV theorem in the proof (suppose you are hav-
ing a Mathematics Contest, then you can not re-build the general-mixing-variable
lemma then the SMV theorem again. In this section I will help you handle this mat-
ter. Let us review some problems from Volume I. Reading thoroughly their solutions
may bring a lot of interesting things in your mind.

Example 1.14.2. Let a, b, c, d be positive real numbers with sum 4. Prove that

abc+ bcd+ cda+ dab+ a2b2c2 + b2c2d2 + c2d2a2 + d2a2b2 ≤ 8.

(Phan Thanh Nam, Volume I)

Example 1.14.3. Prove that a4 + b4 + c4 + d4 ≥ 28abcd for all a, b, c, d > 0 satisfying

(a+ b+ c+ d)2 = 3(a2 + b2 + c2 + d2).

(Pham Kim Hung, Volume I)
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Analysis. Generalizing this solution, we can figure out a very simple and useful
method of proving four variable inequalities. The common method we use is to
rewrite the inequality by replacing s1 = a + b, x1 = ab and s2 = c + d, x2 = cd.
Regarding it as a function of x1 = ab and x2 = cd, we can show that the expression
attains the maximum or minimum when a = b, c = d or abcd = 0. Let us see a de-
tailed solution.

SOLUTION. (for Turkevici’s inequality) Denote m = a2 + b2, n = c2 + d2 and
x = ab, y = cd. We can rewrite the inequality in the following form

m2 − 2x2 + n2 − 2y2 + 2xy ≥ x2 + y2 + (m2 − 2x)(n2 − 2y)

or
f(x, y) = −2x2 − 2y2 + 2xy +m2 + n2 − (m2 − 2x)(n2 − 2y) ≥ 0.

Let us imagine that m and n are fixed as two constants. The variables x and y can
vary freely but 2x ≤ m and 2y ≤ n. Since the function f , considered as a one-variable
function in each variable x, y, is concave (the coefficients of both x2 and y2 are −1),
we get that

min f(x, y) = min f(α, β)

where α ∈
{

0,
m

2

}
and β ∈

{
0,
m

2

}
(we use the proposition that if a n-variable

function is concave when we consider it as a one-variable function of each of its
initial variables, then the minimum of this function is attained at its boundaries -
this is one of the propositions on convex function in Volume I). Now if α =

m

2
and

β =
n

2
then we may assume that a = b, c = d. In this case, the inequality becomes

obvious
2(a4 + c4) + 2a2c2 ≥ a4 + b4 + 4a2c2 ⇔ (a2 − c2)2 ≥ 0.

Otherwise, we must have αβ = 0. In other words, we may assume that abcd = 0.
WLOG, assume that d = 0, then the inequality becomes

a4 + b4 + c4 ≥ a2b2 + b2c2 + c2a2,

which is obvious, too. Therefore we are done in every case, and the desired result
follows.

∇

Analysis. In this solution, we exploit the relationships 0 ≤ x ≤ m

2
, 0 ≤ y ≤ n

2
.

Moreover, we should notice that it is necessary to fix m and n first and let x, y vary
(we can do that because for all 0 ≤ x0 ≤

m

2
, there exist two numbers a, b such that

ab = m and a2 + b2 = n2). For further analysis , see the solution to another familiar
inequality already solved by SMV theorem.
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Example 1.14.4. Let a, b, c, d be non-negative positive real numbers with sum 1. Prove that

abc+ bcd+ cda+ dab ≤ 1

27
+

176

27
abcd.

SOLUTION. In this problem, we fix a + b = m and c + d = n. Let x = ab and y = cd

then

abc+ bcd+ cda+ dab− 1

27
− 176

27
abcd = my + nx− 1

27
− 176xy

27
= f(x, y)

is a linear (convex) function in both x and y. It only reaches the maximum at bound-
ary values, namely

max f(x, y) = f(α, β) ;α ∈
{

0,
m2

4

}
; β ∈

{
0,
n2

4

}
.

If α =
m2

4
and β =

n2

4
, we have a = b, c = d. In this case, the problem becomes

2(a2c+ c2a) ≤ 1

27
+

176a2c2

27
,

for all non-negative real numbers a, c and a+ c =
1

2
. This inequality is equivalent to

176a2c2 + 1 ≥ 27ac,

which is obviously true since ac ≤ 1

16
. The equality holds for a = b = c = d =

1

4
.

Otherwise, if α 6= m2

4
and β 6= n2

4
, we must have mn = 0 or abcd = 0. WLOG,

assume that d = 0, the inequality becomes abc ≤ 1

27
if a + b + c = 1. This follows

immediately from AM-GM inequality and attains equality for a = b = c =
1

3
. We

are done.
∇

These solutions suggest two ways of using this techique: the first way is to fix
a + b, c + d and the second way is to fix a2 + b2, c2 + d2. Sometimes, we may fix
a2 + b2, c2 + d2 and consider a + b, c + d as variables, etc. All these are directed
towards the same objective to make a = b, c = d or abcd = 0. This is the reason why I
consider this as a mixing variable method (to make a = b or ab = 0). Finally, we have
some applications of this very simple and elementary technique.

Example 1.14.5. Let a, b, c, d be non-negative real numbers with sum 4. Prove that

a2b2 + b2c2 + c2d2 + d2a2 + a2c2 + b2d2 + 10abcd ≤ 16.

(Pham Kim Hung)
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SOLUTION. We fix a+ b = m and c+ d = n. Let ab = x and cd = y then∑
cyc

a2b2 + 10abcd = x2 + y2 + (m2 − 2x)(n2 − 2y) + 10xy

are convex functions in each variable x and y. Therefore we only need to consider
the case

x ∈
{

0 ;
m2

4

}
; y ∈

{
0 ;

n2

4

}
.

Consider the first case x =
m2

4
and y =

n2

4
. In this case, we have a = b and c = d.

The inequality becomes

a4 + c4 + 14a2c2 ≤ (a+ c)4.

Clearing similar teams, we get the following inequality

4(a3c+ c3a) ≥ 8a2c2,

which follows from AM-GM inequality. The equality holds for a = b = c = d = 1.
Now it’s time for the second case xy = 0 or abcd = 0. WLOG, assume that d = 0. The
inequality becomes

a2b2 + b2c2 + c2a2 ≤ 16.

WLOG, assume that a ≥ b ≥ c. Since a+ b+ c = 4, we infer that

a2b2 + b2c2 + c2a2 ≤ a2b2 + 2a2bc ≤ a2(b+ c)2 ≤ 16.

This ends the proof. The equality holds for a = b = c = d = 1 or a = b = 2, c = d = 0

or permutations.
∇

Example 1.14.6. Let a, b, c, d be non-negative real numbers with sum 4. Prove that

(1 + 3a)(1 + 3b)(1 + 3c)(1 + 3d) ≤ 125 + 131abcd

(Pham Kim Hung)

SOLUTION. We fix a+ b = m and c+ d = n. Let x = ab and y = cd (we regard x and
y as variables). The inequality becomes

(1 + 9y + 3n)(1 + 9x+ 3m)− 125− 131xy ≥ 0.

This expression is a linear (and also convex) function in each variable x and y, we
get that it suffices to consider the case

x ∈
{

0 ;
m2

4

}
; y ∈

{
0 ;

n2

4

}
;
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If xy = abcd = 0, we infer that one of the four numbers a, b, c, d is 0 and the inequality

becomes obvious. Otherwise, we must have x =
m2

4
and y =

n2

4
, or in other words,

a = b and c = d. The condition becomes a+ c = 2 and the inequality that remains is

(1 + 3a)2(1 + 3c)2 ≤ 125 + 131a2c2

or
(7 + 9ac)2 ≤ 125 + 131ac.

This inequality is obvious since ac ≤ 1. This ends the proof.

∇

I believe that these examples are enough for you to comprehend this simple tech-
nique. Right now, we will stop discussing the matter of applying convex functions
to prove four-variable symmetric inequalities, and we will show a general theorem
for the general case - problems in n variables. This useful theorem is often known as
”Single inflection point Theorem” (or, for shortening, SIP theorem)

Theorem 5 (SIP theorem). Let f be a twice diffirentiable function on R with a single
inflection point. For a fixed real number S, we denote

g(x) = (n− 1)f(x) + f

(
S − x
n− 1

)
.

For all real numbers x1, x2, ..., xn with sum S, we have

inf
x∈R

g(x) ≤ f(x1) + f(x2) + ...+ f(xn) ≤ sup
x∈R

g(x).

PROOF. First we will prove that

f(x1) + f(x2) + ...+ f(xn) ≥ inf
x∈R

g(x).

Assume that a is the single inflection point of f(x). Denote I1 = [a,+∞) and I2 =

(−∞, a]. According to the hypothesis, we deduce that either f(x) is convex on I1,
concave on I2 or f(x) is concave on I1, convex on I2. WLOG, assume that f(x) is
convex on I1 and concave on I2. If x1, x2, ..., xn ∈ I1, we are done immediately by
Jensen inequality. Otherwise, suppose that x1, x2, ..., xk ∈ I2 and xk+1, xk+2, ..., xn ∈
I1. Since f(x) is concave on I2, by Karamata inequality (see one of the following
articles), we conclude that

f(x1) + f(x2) + ...+ f(xk) ≤ (k − 1)f(a) + f(x1 + x2 + ...+ xk − (k − 1)a).

Since f(x) is convex on I1, we conclude that

(k−1)f(a)+f(xk+1)+f(xk+2)+...+f(xn) ≥ (n−1)f

(
ka+ xk+1 + xk+2 + ...+ xn

n− 1

)
.
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For α = x1 + x2 + ...+ xk − (k − 1)a and β =
ka+ xk+1 + xk+2 + ...+ xn

n− 1
, we get

f(x1) + f(x2) + ...+ f(xn) ≥ (n− 1)f(β) = (n− 1)f(β) + f

(
S − β
n− 1

)
.

This shows the desired result immediately. Similar proof for the remaining part.

Comment. According to this proof, we get the following result

F Let f be a twice diffirentiable function on R with a single inflection point (f convex
on I1 and concave on I2). For all real numbers x1, x2, ..., xn with sum S, there exist
numbers α ∈ I1 and β ∈ I2 such that

(n− 1)f(α) + f

(
S − α
n− 1

)
≤ f(x1) + f(x2) + ...+ f(xn) ≤ (n− 1)f(β) + f

(
S − β
n− 1

)
.

∇

With the help of this theorem, we can prove a lot of nice and hard inequalities.

Example 1.14.7. Let a, b, c, d be positive real numbers such that abcd = 1. Prove that

a3 + b3 + c3 + d3 + 12 ≥ 2(a+ b+ c+ d+ abc+ bcd+ cda+ dab).

(Pham Kim Hung)

SOLUTION. We have to prove that f(x) + f(y) + f(z) + f(t) ≥ 4 where x, y, z, t are
ln a, ln b, ln c, ln d respectively and

f(x) = e3x − 2ex − 2e−x.

Clearly
f ′′(x) = 9e3x − 2ex − 2e−x.

Denote t = ex. The equation f ′′(x) = 0 is equivalent to 9t4−2t2−2 = 0, or 9 =
2

t2
+

2

t4
.

This has exactly one positive real root. That means f(x) has a single inflection point.
Therefore, according to SIP theorem, we may return to consider the initial problem
in case a = b = c and d = −a3. In this case, the inequality becomes

3a3 + a−9 + 12 ≥ 2
(
3a+ a−3 + a3 + 3a−1

)
or

a12 − 6a10 + 12a9 − 8a8 − 2a6 + 1 ≥ 0.

This last inequality can be rewritten as

(a− 1)2(t10 + 2t9 − 3t8 + 4t7 + 5t6 + 6t5 + 5t4 + 4t3 + 3t2 + 2t+ 1) ≥ 0,

which is obvious. Therefore we are done and the equality holds for a = b = c = d =

1.
∇
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Example 1.14.8. Let a, b, c, d be positive real numbers with sum 4. Prove that

9

(
1

a
+

1

b
+

1

c
+

1

d

)
+ 56 ≥ 15

(
a2 + b2 + c2 + d2

)
.

(Pham Kim Hung)

SOLUTION. We have to prove that f(a) + f(b) + f(c) + f(d) ≥ 0 where

f(x) =
9

x
− 15x2.

Since f ′′(x) =
18

x3
−30 has exactly one positive real root, we infer that f(x) has a single

inflection point. Applying SIP theorem, we only need to consider the inequality in

case a = b = c = x ≤ 3

√
18

30
and d = 4− 3x. In this case, the inequality becomes

g(x) = 9

(
3

x
+

1

4− 3x

)
− 15

(
3x2 + (4− 3x)2

)
+ 56.

Clearly

g′(x) = 27

(
1

(4− 3x)2
− 1

x2

)
− 90 (x− (4− 3x))

=
9(4− 4x)

x2(4− 3x)2
(
3(4− 2x)− 10x2(4− 3x)2

)
=

72(x− 1)(3x− 1)(6 + 15x− 35x2 + 15x3)

x2(4− 3x)2
.

Since x ≤ 3

√
18

30
< 1, we get that 6 + 15x − 35x2 + 15x3 > 0. Therefore, in the range

(0 , 1] , the minimum of g is attained at x =
1

3
. In other words, we can conclude that

g(x) ≥ g
(

1

3

)
= 0.

This ends the proof. Equality holds for a = b = c =
1

3
, d = 3 or permutations.

∇

Example 1.14.9. Let a1, a2, ..., an be positive real numbers such that a1a2...an = 1. Prove
that

1

n− 1 + a1
+

1

n− 1 + a2
+ ...+

1

n− 1 + an
≤ 1.

(Romania TST 1998)
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SOLUTION. We have to prove that

f(x1) + f(x2) + ...+ f(xn) ≤ 1

where xi = ln ai ∀i ∈ {1, 2, ..., n} and

f(x) =
1

n− 1 + ex
.

We have

f ′′(x) =
2 (ex − (n− 1))

(n− 1 + ex)3
.

Since the function f ′′(x) has exactly one root, according to SIP theorem, we conclude
that it suffices to consider the inequality in case x1 = x2 = ... = xn−1. In other words,
we have to prove that if a1 = a2 = ... = an−1 = a and an = a1−n then

n− 1

n− 1 + a
+

1

a1−n + n− 1
≤ 1.

This can be reduced to

(a− 1)2

(
n(n− 1)

n−2∑
i=0

ai − n
n−2∑
i=0

ai

)
≥ 0,

which is obvious. Equality holds for a1 = a2 = ... = an = 1.

∇

Example 1.14.10. Let a1, a2, ..., an be positive real numbers with product 1. Prove that

a21 + a22 + ...+ a2n − n ≥
2n

n− 1
n
√
n− 1(a1 + a2 + ...+ an − n).

(Gabriel Dospinescu, Calin Popa)

SOLUTION. For k =
2n

n− 1
n
√
n− 1, we consider the following function

f(x) = e2x − kex.

We have to prove that f(x1) + f(x2) + ... + f(xn) ≥ (1 − k)n where xi = ln ai ∀i ∈
{1, 2, ..., n}. Since the function

f ′′(x) = 4e2x − kex

has exactly one real root, we infer that f(x) has a single inflection point. According
to the SIP theorem, we may assume that x1 = x2 = ... = xn−1, or in other words,
a1 = a2 = ... = an−1. The rest follows from what we have done in example ??. The
equality holds for a1 = a2 = ... = an = 1.

∇
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Example 1.14.11. Let a, b, c, d, e, f be positive real numbers with sum 6. Prove that

(1+a2)(1+b2)(1+c2)(1+d2)(1+e2)(1+f2) ≥ (1+a)(1+b)(1+c)(1+d)(1+e)(1+f).

(Pham Kim Hung)

SOLUTION. Consider the following function in the positive variable x

f(x) = ln(1 + x2)− ln(1 + x).

We have certainly

f ′′(x) =
2(1− x2)

(1 + x2)2
+

1

(1 + x)2
.

The equation f ′′(x) = 0 is equivalent to

g(x) = 3x4 + 4x3 + 2x2 − 4x− 1 = 0.

Since g′′(x) > 0 ∀x > 0, the equation g(x) = 0 has no more than two positive real
roots. However, if it had exactly two positive real roots, it must have one more root
(because the last coefficient is −1). So we get that g(x) has exactly one positive real
root. In other words, f(x) has a single inflection point. According to SIP theorem,
we only need to consider the initial inequality in case a = b = c = d = e = x and
e = 6− 5x. We have to prove that

p(x) = 5 ln(1 + x2) + ln
(
1 + (6− 5x)2

)
− 5 ln(1 + x) + ln(7− 5x) ≥ 0.

Clearly,

p′(x) =
10x

1 + x2
− 10(6− 5x)

1 + (6− 5x)2
− 5

1 + x
+

5

7− 5x

= 30(x− 1)

(
2− 2x(6− 5x)

(1 + x2)(1 + (6− 5x)2)
+

1

(1 + x)(7− 5x)

)
.

Consider the function

q(x) = (1 + x2)(1 + (6− 5x)2) + (2− 2x(6− 5x)) (1 + x)(7− 5x)

= −25x4 + 20x3 + 98x2 − 140x+ 51.

We will prove that q(x) ≥ 0 ∀0 ≤ x ≤ 6

5
. Indeed, if x ≥ 1 then x(6 − 5x) ≤ 1 ⇒

q(x) ≥ 0. Otherwise, if x ≤ 1, consider the following cases

Case x ≤ 0.8. We are done since

q(x) = 10x(4− 5x) + (98x2 − 140x+ 51) > 0.

Case 0.8 ≤ x ≤ 0.88. We are done since

q(x) = x2(2 + 20x− 25x2) + (96x2 − 140x+ 51) ≥ 0.
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Case 0.88 ≤ x ≤ 1. We are done since

q(x) = x2(5 + 20x− 25x2) + (94x2 − 140x+ 51) ≥ 0.

In every case, it is clear that q(x) ≥ 0. We conclude that p′(x) = 0 ⇔ x = 1,
which implies p(x) ≥ p(1) = 0. This ends the proof, and the equality holds for
a = b = c = d = e = f = 1.

∇

Example 1.14.12. Let a, b, c, d be positive real numbers with sum 4. Prove that

(1 + a2)(1 + b2)(1 + c2)(1 + d2) ≥ 104

93
.

(Pham Kim Hung, Volume I)

SOLUTION. We have to prove that

f(a) + f(b) + f(c) + f(d) ≥ 4 ln 10− 3 ln 9,

where f(x) = ln
(
1 + x2

)
. Since

f ′′(x) =
2(1− x2)

(1 + x2)2

has exactly one positive real root x = 1, we obtain by SIP theorem that there exists a
numbers p ≤ 1 for which

f(a) + f(b) + f(c) + f(d) ≥ 3f(p) + f(4− 3p).

Denote

g(p) = 3f(p) + f(4− 3p) = 3 ln
(
1 + p2

)
+ ln

(
1 + (4− 3p)2

)
,

then we get

g′(p) =
6p

1 + p2
− 6(4− 3p)

1 + (4− 3p)2
=

24(p− 1)2(3p− 1)

(1 + p2) (1 + (4− 3p)2)
,

and it is easy to conclude that

g(p) ≥ g
(

1

3

)
= 4 ln 10− 3 ln 9,

as desired. The equality holds for a = b = c =
1

3
, d = 3 or permutations.

∇
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1.15 nSMV Theorem and Applications

If the importance of SMV theorem is to provide a standard way to prove four-
variable inequalities, the improved SMV theorem, called nSMV, becomes very effec-
tive in proving n-variables inequalities. Although nSMV theorem is based on SMV
theorem, the intensive applications of nSMVare really incredible. To prove nSMV
theorem, we use a new result similar to the general mixing variable lemma (the result
shown in the previous article), but first, we need to clarify some basic properties that
hold between three real numbers.

Lemma 1. Suppose that a, b, c are non-negative real numbers satisfying a+ b+ c = 2 + r

and a2 + b2 + c2 = 2 + r2, r ≤ 1 is non-negative real constant then abc ≥ r.

Lemma 2. Suppose that m,n are two non-negative real constants, then the system of equa-
tions x+ y + z = m

xy + yz + zx = n

has a solution (x, y, z) = (a, b, c), with a, b, c ≥ 0 if and only if m2 ≥ 3n.

PROOF. The second lemma is quite obvious, therefore we will prove the first one.

Denote x = a−1, y = b−1, z = c−1 then x+y+z = r−1 and x2+y2+z2 = (r−1)2, so
we infer xy+yz+zx = 0. We also have that x, y, z are the real roots of the polynomial
f(t) = (t − x)(t − y)(t − z) = t3 + (1 − r)t2 − xyz. Now suppose that xyz < 0 then
all coefficients of f(t) are non-negative and therefore all its roots are non-positive, or
x, y, z ≤ 0. This result contradicts the assumption xy + yz + zx = 0. Then we must
have xyz = (a− 1)(b− 1)(c− 1) ≥ 0 and the conclusion follows.

∇

Lemma 3. Suppose that a, b, c are three non-negative real numbers satisfying a +

b + c = m, ab + bc + ca = n, where m and n are two non-negative real
constants. If m2 ≥ 4n then the minimum value of abc is 0, with equality for

a = 0 and (b, c) =

(
m+

√
m2 − 4n

2
,
m−

√
m2 − 4n

2

)
up to permutation. If

3n ≤ m2 < 4n then the minimum values of abc are attained for (a, b, c) =(
m− 2

√
m2 − 3n

3
,
m+

√
m2 − 3n

3
,
m+

√
m2 − 3n

3

)
up to permutation.

PROOF. We consider the following cases

(i) The first case. If m2 ≤ 4n then there exist two numbers a0, b0 such that a + b =
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m, ab = 4n, therefore (a, b, c) = (a0, b0, 0) satisfies the systema+ b+ c = m

ab+ bc+ ca = n

Certainly, the a0 · b0 · 0 = 0 and therefore the minimum of abc is 0.

(ii) The second case. If 3n ≤ m2 < 4n then it is easy to check that there exist two
numbers k, r (k ≥ r ≥ 0) for which m = 2k + r, n = 2k2 + r2. According to lemma 1,
we conclude that abc ≥ k2r, as desired.

∇

As a matter of fact, the third lemma can be proved easily by derivatives, but
proofs without derivatives are better. However, derivatives can help us confirm eas-
ily that

Lemma 4. Suppose that a, b, c are three non-negative real numbers satisfying a +

b + c = m, ab + bc + ca = n, where m and n are two non-negative real
constants and m2 ≥ 3n. The maximum value of abc is attained for (a, b, c) =(
m+ 2

√
m2 − 3n

3
,
m−

√
m2 − 3n

3
,
m−

√
m2 − 3n

3

)
up to permutation.

Lemma 5. Suppose that a, b, c are three positive real numbers satisfying a + b + c =

m, 1/a + 1/b + 1/c = n, where m and n are two positive real constants and mn ≥

9, then abc is maximal when a = b =
(mn+ 3) +

√
(mn− 1)(mn− 9)

4n
, c =

(mn− 3)−
√

(mn− 1)(mn− 9)

2n
up to permutation; and abc is minimal when a = b =

(mn+ 3)−
√

(mn− 1)(mn− 9)

4n
, c =

(mn− 3) +
√

(mn− 1)(mn− 9)

2n
up to permu-

tation.

Although these lemma seem to be hard to apply, they are meant to be used for a
more important result, nSMV theorem.

Before showing nSMV theorem, we will prove an improved general mixing vari-
able lemma (and a give general kind of ∆ transformation). Its proof is still based on
that of the initial lemma.

Lemma 6 (Improved general mixing variable lemma). Let (a1, a2, ..., an) be a sequence
of real numbers and ε1, ε2 be two constants such that ε1, ε2 ∈ (0, 1). Carry out the following
transformations

1. Choose i, j ∈ {1, 2, ..., n} to be two different indices satisfying

ai = max(a1, a2, ..., an), aj = min(a1, a2, ..., an).
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2. Replace ai, aj by a certain number α (without changing their ranks) for which

α ∈ [ai, aj ],

∣∣∣∣ ai − αai − aj

∣∣∣∣ < ε1 < 1,

∣∣∣∣ ai − αai − aj

∣∣∣∣ < ε2 < 1.

After repeating these two transformations, all numbers ai tend to the same limit.

PROOF. The following proof is based on the proof of the general mix-
ing variables lemma. Henceforward, we will call this transformation the Γ-
transformation, which is indeed an extension of the initial ∆ transformation. De-
note the first sequence as (a1,1, a1,2, ..., a1,n) and the sequence after the k-th Γ-
transformation as (ak,1, ak,2, ..., ak,n). DenoteMk = max(ak,1, ak,2, ..., ak,n) andmk =

min(ak,1, ak,2, ..., ak,n). We have of course that (Mk)∞k=1 is a non-increasing sequence
and (mk)∞k=1 is a non-decreasing sequence, so there are two finite limits

M = lim
k→∞

Mk, m = lim
k→∞

mk

and we need to prove that M = m. WLOG, suppose that M1 = a1 = a1,1 and m1 =

an = an,1. The Γ-transformation changes a1 and an to a2,1 = a2,n = x2 ∈ [a1, an] (we
can assume that a1 > an). If there exists some transformations that transform an,1

again (that means there exists some numbers k > 2 for which mk (or Mk) is equal
to x2), we must have m2 (or M2) is equal to x2. Indeed, suppose that mk = x2, since
x2 = a2,n it follows that x2 ≥ m2 ≥ ... ≥ mk and the equality must hold, or m2 = x2.
Denote xk to be the result of Mk and mk after the k-th Γ-transformation, then we
infer that

S = {k : ∃l > k|ml = xk} = {k|mk+1 = xk} ;

P = {k : ∃l > k|Ml = xk} = {k|Mk+1 = xk} .

By hypothesis, if k ∈ S then

Mk+1 −mk+1 = Mk+1 − xk ≤Mk − xk ≤ ε1(Mk −mk).

Similarly, if k ∈ P then

Mk+1 −mk+1 ≤ ε2(Mk −mk).

Because ε1, ε2 ∈ (0, 1), if S or P are infinite, we have lim
k→∞

(Mk −mk) = 0 ⇒M = m

and the conclusion follows. Otherwise, both S and P are finite. We deduce that Γ-
transformations don’t impact on ak,1 and ak,n after a sufficiently large number k.
Without loss of generality, we can assume that S = P = ∅. Therefore ak,1 = a2,1 for
all number k ∈ N and k ≥ 2 and we can eliminate the number a2,1 from the sequence
and consider the remaining problem for the sequence (a2,2, a2,3, ..., a2,n) (only n− 1

terms). By a simple induction, we have the desired result.

∇

From this lemma, we can deduce a generalization of SMV theorem as follows
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Theorem 6 (nSMV theorem). Suppose that the function f : Rn → R is a continuous,
symmetric, lower bounded function satisfying the condition

f(a1, a2, ..., an) ≥ f(b1, b2, ..., bn),

where (b1, b2, ..., bn) is obtained from (a1, a2, ..., an) by a Γ-transformation, then

f(a1, a2, ...., an) ≥ f(x, x, ..., x)

where x is a certain number (normally defined by the specific form of Γ).

The basic importance of nSMV theorem is that it uses a very general transforma-
tion Γ that has a lot of particular applications. Indeed, here are some of them

Corollary 1. Suppose that x1, x2, ..., xn are positive real numbers such that

x1 + x2 + ...+ xn = const,
1

x1
+

1

x2
+ ...+

1

xn
= const

and f(x1, x2, ..., xn) a continuous, symmetric, lower bounded function satisfying that, if
x1 ≥ x2 ≥ ... ≥ xn and x2, x3, ..., xn−2 are fixed then f(x1, x2, ..., xn) = g(x1, xn−1, xn)

is a strictly increasing function of x1xn−1xn; then f(x1, x2, ..., xn) attains the minimum
value if and only if x1 = x2 = ... = xn−1 ≤ xn. If x1 ≥ x2 ≥ ... ≥ xn and x3, ..., xn−1 are
fixed then f(x1, x2, ..., xn) = g(x1, x2, xn) is a strictly increasing function of x1x2xn; then
f(x1, x2, ..., xn) attains the maximum value if and only if x1 = x2 = ... = xn−1 ≥ xn.

Corollary 2. Suppose that x1, x2, ..., xn are non-negative real numbers satisfying

x1 + x2 + ...+ xn = const, x21 + x22 + ...+ x2n = const

and f(x1, x2, ..., xn) a continuous, symmetric, under-limitary function satisfying that, if
x1 ≥ x2 ≥ ... ≥ xn and x2, x3, ..., xn−2 are fixed then f(x1, x2, ..., xn) = g(x1, xn−1, xn)

is a strictly increasing function of x1xn−1xn; then f(x1, x2, ..., xn) attains the minimum
value if and only if x1 = x2 = ... = xk = 0 < xk+1 ≤ xk+2 = ... = xn, where
k is a certain natural number and k < n. If x1 ≥ x2 ≥ ... ≥ xn and x3, ..., xn−1 are
fixed then f(x1, x2, ..., xn) = g(x1, x2, xn) is a strictly increasing function of x1x2xn; then
f(x1, x2, ..., xn) attains the maximum value if and only if x1 = x2 = ... = xn−1 ≤ xn.

PROOF. To prove the above corollaries, we only show the hardest, that is the second
part of the second corollary (and other parts are proved similarly).

F Suppose that x1, x2, ..., xn are non-negative real numbers satisfying

x1 + x2 + ...+ xn = const, x21 + x22 + ...+ x2n = const

and f(x1, x2, ..., xn) a continuous, symmetric, under-limitary function satisfying that if
x1 ≥ x2 ≥ ... ≥ xn and x2, x3, ..., xn−2 are fixed then f(x1, x2, ..., xn) = g(x1, xn−1, xn)
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is a strictly increasing function of x1xn−1xn; then f(x1, x2, ..., xn) attains the minimum
value if and only if x1 = x2 = ... = xk = 0 < xk+1 ≤ xk+2 = ... = xn, where k < n is a
certain natural number.

To prove this one, we will chose the transformation Γ on (x1, x2, ..., xn) as

(i). The first step. Choose i, j, k ∈ {1, 2, ..., n} to be different indices satisfying

ai = max(a1, a2, ..., an), aj = min
t=1,n,at>0

{at}, ak = min
t=1,n,at>0,t6=j

{at}.

(ii). The second step. With s = a+ b+ c, p = ab+ bc+ ca, replace ai, aj , ak by

+, a′i = a′k =
s+

√
s2 − 3p

3
, a′j =

s− 2
√
s2 − 3p

3
if 4p ≥ s2 ≥ 3p (1).

+, a′i =
s+

√
s2 − 4p

2
, a′k =

s−
√
s2 − 4p

2
, a′j = 0 if s2 > 4p (2).

After each of these transformations, (ai, aj , ak) becomes a new triple (a′i, a
′
j , a
′
k) with

ai + aj + ak = a′i + a′j + a′k, aiaj + ajak + akai = a′ia
′
j + a′ja

′
k + a′ka

′
i,

but the product a′ia
′
ja
′
k is minimal (that is aiajak ≥ a′ia

′
ja
′
k). Notice that the step (2)

can’t be carried indefinitely, because we can change positive terms of (a1, a2, ..., an)

to 0 in only finitely many times (no more than n times). Therefore, to get the conclu-
sion, we only need to prove that if 4p ≥ s2 ≥ 3p then∣∣∣∣a′i − akai − ak

∣∣∣∣ < ε1 < 1,

∣∣∣∣ a′i − aiai − ak

∣∣∣∣ < ε2 < 1.

We don’t need to take care of how aj changes, because the condition 4p ≥ s2 ≥ 3p

ensures that a′j ≥ 0. Denote ai = a, ak = b, aj = c so a ≥ b ≥ c and therefore

a′i =
a+ b+ c+

√
a2 + b2 + c2 − ab− bc− ca

3

and we deduce that∣∣∣∣a′i − akai − ak

∣∣∣∣ =
a+ b+ c+

√
a2 + b2 + c2 − ab− bc− ca− 3b

3(a− b)

=
(a− b)− (b− c) +

√
1
2 ((a− b)2 + (b− c)2 + (c− a)2)

3(a− b)

≤ (a− b)− (b− c) + (a− c)
3(a− b)

=
2

3
< 1.

∣∣∣∣ a′i − aiai − ak

∣∣∣∣ =
(a− b) + (a− c)−

√
1
2 ((a− b)2 + (b− c)2 + (c− a)2)

3(a− b)

≤ (a− b) + (a− c)− (b− c)
3(a− b)

=
2

3
< 1.
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Notice that the Γ-transformation makes the product aiajak minimal, and also
f(a1, a2, ..., an) minimal (if we fix all numbers at, t 6= i, j, k). Therefore we are done.

∇

According to this proof, we can prove the following result as well (that let’s us
use nSMV theorem more freely) as follows

Corollary 3. Suppose that x1, x2, ..., xn are non-negative real numbers such that

x1 + x2 + ...+ xn = const, x21 + x22 + ...+ x2n = const.

Let f(x1, x2, ..., xn) be a continuous, symmetric, under-limitary function. If we fix
x4, x5, ..., xn then f(x1, x2, ..., xn) = g(x1, x2, x3) is a strictly increasing function of
x1x2x3 then f(x1, x2, ..., xn) attains the minimum value if and only if x1 = x2 =

... = xk = 0 < xk+1 ≤ xk+2 = ... = xn, where k < n is a certain natural num-
ber. If we fix x4, x5, ..., xn then f(x1, x2, ..., xn) = g(x1, x2, x3) is a strictly increas-
ing function of x1x2x3 then f(x1, x2, ..., xn) attains the maximum value if and only if
x1 = x2 = ... = xn−1 ≥ xn.

Actually, I know that these results are difficult for you to comprehend because of
their complicated appearances, but you will see that everything is clear after you try
to prove the following examples

Example 1.15.1. Let a, b, c, d be non-negative real numbers. Prove that

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + b2c2 + c2d2 + d2a2 + a2c2 + b2d2.

(Turkevici’s inequality)

SOLUTION. If we fix a+ b+ c = const and a2 + b2 + c2 = const, then

RHS−LHS = (a2+b2+c2)2−3(ab+bc+ca)2+6abc(a+b+c)+2abcd−d2(a2+b2+c2)

is certainly an increasing function of abc. By corollary 3, it’s enough to prove the
inequality if a = b = c ≥ d or abcd = 0. If d = 0 then we have to prove that
a4 + b4 + c4 ≥ a2b2 + b2c2 + c2a2, which is obvious. If a = b = c, the inequality
becomes 3d4 + 2a3d ≥ 3a2d2, which is directly obtained from AM-GM inequality,
too. The proof is completed successfully.

∇

Example 1.15.2. Let a, b, c, d be non-negative real numbers with sum 4. Prove that

(1 + 2a)(1 + 2b)(1 + 2c)(1 + 2d) ≤ 10(a2 + b2 + c2 + d2) + 41abcd.
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(Pham Kim Hung)

SOLUTION. First, notice that if a ≤ b ≤ c ≤ d and c ≤ 1/3 then a, b ≤ 1/3 and d ≥ 3

and we are done because

10(a2 + b2 + c2 + d2) + 41abcd ≥ 90 > (1 + 2a)(1 + 2b)(1 + 2c)(1 + 2d).

So we may assume that a ≤ b ≤ c ≤ d, c ≥ 1

3
. We fix c = const, a2+b2+c2+d2 = const

(therefore a+ b+ d, a2 + b2 + d2 are fixed, too). Denote

f(a, b, c, d) = (1 + 2a)(1 + 2b)(1 + 2c)(1 + 2d)− 10(a2 + b2 + c2 + d2)− 41abcd.

The coefficient of abd is 8(1 + 2c) − 41c = 8 − 25c ≤ 0, so f is a strictly decreasing
function of abc. According to corollary 2 of nSMV theorem, it’s enough to consider
the two cases a ≤ b = c = d and abcd = 0. If a ≤ b = c = d = x then the inequality
can be rewritten as (x− 1)2(−75x2 + 14x+ 151) ≥ 0, which is true because x ≤ 4/3.
If abcd = 0, then a = 0 and the inequality is also obvious because

10(b2 + c2 + d2) ≥ 160

3
≥ (1 + 2a)(1 + 2b)(1 + 2c).

We are done and the equality holds for a = b = c = d = 1.

Comment. In the same manner, we can prove a stronger result as follows

F Let a, b, c, d be non-negative real numbers with sum 4 then

144(1 + 2a)(1 + 2b)(1 + 2c)(1 + 2d) ≤ 1331(a2 + b2 + c2 + d2) + 6340abcd.

∇

Example 1.15.3. Let x1, x2, ..., xn be non-negative real numbers such that x1 + x2 + ...+

xn = n. Prove that

(x1x2...xn)
1√
n−1 (x21 + x22 + ...+ x2n) ≤ n.

(Vasile Cirtoaje)

SOLUTION. If we fix x1 +x2 +x3 and x21 +x22 +x23 then the left-hand expression of the
above inequality is clearly a strictly increasing function of x1x2x3, so, according to
the corollary 2 of nSMV theorem, we conclude that it suffices to consider the initial
inequality in case x1 = x2 = ... = xn−1 = x ≤ 1 and xn = n − (n − 1)x. In this case,
the inequality becomes

x
√
n−1(n− (n− 1)x)

1√
n−1

(
(n− 1)x2 + (n− (n− 1)x)2

)
≤ n

or f(x) ≤ 0 ∀x ≤ 1 where

f(x) =
√
n− 1 lnx+

1√
n− 1

ln(n−(n−1)x)+ln
(
(n− 1)x2 + (n− (n− 1)x)2

)
− lnn.
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It is easy to check that

f ′(x) =
n
√
n− 1(1− x)

(√
n− 1x− n+ (n− 1)x

)2
x(n− (n− 1)x) (nx2 + (n− (n− 1)x)2)

.

Since x ≤ 1, we get that f ′(x) ≥ 0, therefore

f(x) ≤ f(1) = 0.

This ends the proof. The equality holds for x1 = x2 = ... = xn = 1.

∇

Example 1.15.4. Let a, b, c, d be positive real numbers such that that

2(a+ b+ c+ d)2 = 5(a2 + b2 + c2 + d2).

Find the minimum value of

P =
a4 + b4 + c4 + d4

abcd
.

(Pham Kim Hung)

SOLUTION. First we guess that the equality holds for b = c = d (in this case, we find
out a = 2 +

√
5, b = c = d = 1 and permutations) and this is the key to the solution.

Indeed, denote k = (2 +
√

5)3 + (2 +
√

5)−1 > 78, we will prove

a4 + b4 + c4 ≥ 4abcd.

WLOG, assume that a ≥ b ≥ d ≥ c. We fix d and suppose that a+ b+ c = const, a2 +

b2 + c2 = const. By hypothesis, we have

4(a+ b+ c+ d)2 = 10(a2 + b2 + c2 + d2) ≥ 5
(
(a+ b)2 + (c+ d)2

)
so

(a+ b)2 + (c+ d)2 ≤ 8(a+ b)(c+ d) ⇒ a+ b ≤ (4 +
√

15)(c+ d)

and therefore

a+ b <
(

4 +
√

15
)

(c+ d) <
(

8 + 2
√

15
)
d < 18d ⇒ 4(a+ b+ c) ≤ 76d.

Moreover, notice that

a4 + b4 + c4 − kd · abc = (a2 + b2 + c2)2 − 2(ab+ bc+ ca)2 + [4(a+ b+ c)− kd] abc

is a stricly decreasing function of abc (because a + b + c and a2 + b2 + c2 have been
fixed already). By the second corollary, it suffices to consider the initial problem in
case a ≥ b = c = d. If b = c = d, we deduce that a =

(
2 +
√

5
)
b by hypothesis, so

a4 + b4 + c4 + d4 =
(

(2 +
√

5)4 + 1
)
b4 = kabcd.

∇
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Example 1.15.5. Suppose that a1, a2, ..., an are positive real numbers satisfying

a1 + a2 + ...+ an = a1
−1 + a2

−1 + ...+ an
−1 = n+ 2.

Find the minimum and maximum value of

P = a21 + a22 + ...+ a2n + 2a1a2...an.

(Pham Kim Hung)

SOLUTION. Without loss of generality, we may assume that a1 ≥ a2 ≥ ... ≥ an−1 ≥
an. We fix s = a1 + a2 + an and r =

1

a1
+

1

a2
+

1

an
. Denote x = a1a2an and p =

a3a4...an−1 then the expression P can be rewritten into the form

P = s2 − 2rx+ 2px+

n−1∑
i=3

a2i = s2 − (2r − 2p)x+

n−2∑
i=3

a2i .

Now we will prove that r ≥ p, or

1

a1
+

1

a2
+

1

an
≥ a3a4...an−2.

Indeed, according to the assumptions, AM-GM inequality indicates that

n+ 2 = a1 + a2 + ...+ an ≥ n n
√
a1a2...an

⇒ a1a2...an ≤
(

1 +
2

n

)n
≤ e2 < 9

⇒ a3...an−1 ≤
9

a1 + a2 + an
≤ a1 + a2 + an.

This result shows that P = P (x) is a strictly decreasing function of x. By corollary 1

of nSMV theorem, we deduce that P attains the maximum if x1 ≥ x2 = x3 = ... = xn

and attains the minimum value if x1 ≤ x2 = x3 = ... = xn. By hypothesis, it’s easy
to determine the values of (xi)

n
i=1 for each of these cases. The proof is completed.

∇

Example 1.15.6. Let a, b, c, d be non-negative real numbers with sum 1. Prove that

2(a2 + b2 + c2 + d2) ≥ 27 3
√

(a2 + b2)(a2 + c2)(a2 + d2)(b2 + c2)(b2 + d2)(c2 + d2).

(Pham Kim Hung)

SOLUTION. We will prove a homogeneous inequality as follows

2

(∑
cyc

a

)2(∑
cyc

a2

)
≥ 27 3

√∏
sym

(a2 + b2).
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WLOG, assume that a ≥ b ≥ c ≥ d. If we fix a + c + d, a2 + c2 + d2 and let acd = x

then

(a2+c2)(c2+d2)(d2+a2) = (a2+c2+d2)(ac+cd+da)2−2(a2+c2+d2)(a+c+d)x−x2

is a stricly decreasing function of x. Moreover,

(b2+a2)(b2+c2)(b2+d2) = b6+b4(a2+c2+d2)+b2(ac+cd+da)2−2b2(a+c+d)x+x2

is also a strictly decreasing function of x because its derivative is

−2b2(a+ d+ d) + 2x ≥ 2b2a− 2x ≤ 0.

The expression
∏
cyc

(a2 + b2) is a strictly decreasing function of x = acd. By corollary

2 of nSMV theorem, we conclude that it suffices to examine the initial problem in
cases a = b = c or d = 0. If d = 0, the inequality becomes

8(a+ b+ c)6(a2 + b2 + c2)3 ≥ 39a2b2c2(a2 + b2)(b2 + c2)(c2 + a2).

This one follows from AM-GM inequality immediately because

(a+ b+ c)6 ≥ 36a2b2c2

8(a2 + b2 + c2)3 ≥ 27(a2 + b2)(b2 + c2)(c2 + a2).

Consider the case a = b = c. The inequality becomes

(3a+ d)2(3a2 + d2) ≥ 27a2(a2 + d2)

which is obvious because

(3a+ d)2(3a2 + d2) ≥ (9a2 + 6d2)(3a2 + d2) ≥ 27a2(a2 + d2).

This is the end of the proof. The equality holds for a = b = c, d = 0 or permutations.

Comment. Using this result, we get the following one

F If a, b, c, d are non-negative real numbers then

1

a2 + b2
+

1

a2 + c2
+

1

a2 + d2
+

1

b2 + c2
+

1

b2 + d2
≥ 81

2(a+ b+ c+ d)2
.

Indeed, just apply AM-GM inequality, and we can conclude that∑
cyc

1

a2 + b2
=
∑
cyc

(
1

a2 + b2
+

1

c2 + d2

)

=

(∑
cyc

a2

)(∑
cyc

1

(a2 + b2)(c2 + d2)

)
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≥ 3(a2 + b2 + c2 + d2)

3

√∏
sym

(a2 + b2)
≥ 81

2(a+ b+ c+ d)2
.

∇

Example 1.15.7. Let x1, x2, ..., xn be positive real numbers such that x1+x2+...+xn = n.
Prove that

1

x1
+

1

x2
+ ...+

1

xn
+

2n
√
n− 1

x21 + x22 + ...+ x2n
≥ n+ 2

√
n− 1.

(Pham Kim Hung)

SOLUTION. We fix the sums x1 + x2 + x3, x
2
1 + x22 + x23 and fix the n − 3 numbers

x3, x4, ..., xn. Clearly, x1x2 + x2x3 + x3x1 is a constant and

1

x1
+

1

x2
+

1

x3
=
x1x2 + x2x3 + x3x1

x1x2x2

is a decreasing function of x1x2x3. By corollary 2, we only need to consider the in-
equality in case x1 = x2 = ... = xn−1 = x, xn = n − (n − 1)x. This case can be
completed easily as shown in the end of the proof to the example ??.

∇

Example 1.15.8. Let x1, x2, ..., xn (n ≥ 4) be positive real numbers such that x1 + x2 +

...+ xn = n. Prove that

1

x1
+

1

x2
+ ...+

1

xn
+

√
n
(√
n+ 4 + 2

√
n− 1

)√
x21 + x22 + ...+ x2n

≥ n+ 2
√
n− 1 +

√
n+ 4.

(Pham Kim Hung)

SOLUTION. Similarly with the previous example, if we fix x1 + x2 + x3, x
2
1 + x22 + x23

and fix x4, x4, ..., xn then the left hand side of the inequality is a decreasing function
of x1x2x3. So we may assume that x1 = x2 = ... = xn−1. For convenience, we may
consider the inequality for n + 1 numbers with the assumption that x1 = x2 = ... =

xn = x and xn+1 = n+ 1− nx. We have to prove that

n

x
+

1

n+ 1− nx
+

√
n
(√
n+ 5 + 2

√
n
)√

nx2 + (n+ 1− nx)2
≥ n+ 1 + 2

√
n+
√
n+ 5.

Using the identities

n

x
+

1

n+ 1− nx
− (n+ 1) =

n(n+ 1)(1− x)2

x(n+ 1− nx)
;

nx2 + (n+ 1− nx)2 − (n+ 1) = n(n+ 1)(1− x)2 ,
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our inequality can be transformed to

n(n+ 1)(1− x)2

x(n+ 1− nx)
≥

(√
n+ 5 + 2

√
n
)
n(n+ 1)(1− x)2√

(n+ 1) (nx2 + (n+ 1− nx)2) + nx2 + (n+ 1− nx)2
.

It remains to prove that√
(n+ 1) (nx2 + (n+ 1− nx)2)+nx2+(n+1−nx)2 ≥

(√
n+ 5 + 2

√
n
)
·x(n+1−nx) (?)

By AM-GM inequality, we get that

nx2 + (n+ 1− nx)2 ≥ 2
√
n · x(n+ 1− nx) .

By Holder inequality, we get that(
n

(n+ 1− nx)2
+

1

x2

)
((n+ 1− nx) + (nx))

2 ≥
(

3
√
n+

3
√
n2
)3

⇒ nx2 + (n+ 1− nx)2 ≥ n ( 3
√
n+ 1)

3

(n+ 1)2
· x2(n+ 1− nx)2 ≥ n+ 4

n+ 1
· x2(n+ 1− nx)2.

These two results combined can deduce (?) immediately, so we have the desired
result. The equality holds for x1 = x2 = ... = xn = 1.

Comment. 1. For n = 5, we get the following result

F Given positive real numbers a, b, c, d, e with sum 5, prove that

1

a
+

1

b
+

1

c
+

1

d
+

1

e
+

7
√

5√
a2 + b2 + c2 + d2 + e2

≥ 12.

2. Another inequality derived from this problem is

F Let x1, x2, ..., xn be positive real numbers with sum n. Prove that

1

x1
+

1

x2
+ ...+

1

xn
+

3
√
n√

x21 + x22 + ...+ x2n
≥ n+ 3.

∇
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Article 7

Majorization and Karamata Inequality

1.16 Theory of Majorization

The theory of majorization and convex functions is an important and difficult part
of inequalities, with many nice and powerful applications. will discuss in this article
is Karamata inequality; however, it’s necessary to review first some basic properties
of majorization.

Definition 1. Given two sequences (a) = (a1, a2, ..., an) and (b) = (b1, b2, ..., bn) (where
ai, bi ∈ R ∀i ∈ {1, 2, ..., n}). We say that the sequence (a) majorizes the sequence (b), and
write (a)� (b), if the following conditions are fulfilled

a1 ≥ a2 ≥ ... ≥ an ;

b1 ≥ b2 ≥ ... ≥ bn ;

a1 + a2 + ...+ an = b1 + b2 + ...+ bn ;

a1 + a2 + ...+ ak ≥ b1 + b2 + ...+ bk ∀k ∈ {1, 2, ...n− 1} .

Definition 2. For an arbitrary sequence (a) = (a1, a2, ..., an), we denote (a∗), a permuta-
tion of elements of (a) which are arranged in increasing order: (a∗) = (ai1 , ai2 , ..., ain) with
ai1 ≥ ai2 ≥ ... ≥ ain and {i1, i2, ..., in} = {1, 2, ..., n}.

Here are some basic properties of sequences.

Proposition 1. Let a1, a2, ..., an be real numbers and a =
1

n
(a1 + a2 + ...+ an), then

(a1, a2, ..., an)∗ � (a, a, ..., a).

Proposition 2. Suppose that a1 ≥ a2 ≥ ... ≥ an and π = (π1, π2, ...πn) is an arbitrary
permutation of (1, 2, ..., n), then we have

(a1, a2, ..., an)� (aπ(1), aπ(2), ..., aπ(n)).
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Proposition 3. Let (a) = (a1, a2, ..., an) and (b) = (b2, b2, ..., bn) be two sequences of real
numbers. We have that (a∗) majorizes (b) if the following conditions are fulfilled

b1 ≥ b2 ≥ ... ≥ bn ;

a1 + a2 + ...+ an = b1 + b2 + ...+ bn ;

a1 + a2 + ...+ ak ≥ b1 + b2 + ...+ bk ∀k ∈ {1, 2, ..., n− 1} ;

These properties are quite obvious: they can be proved directly from the defi-
nition of Majorization. The following results, especially the Symmetric Mjorization
Criterion, will be most important in what follows.

Proposition 4. If x1 ≥ x2 ≥ ... ≥ xn and y1 ≥ y2 ≥ ... ≥ yn are positive real numbers
such that x1 + x2 + ...+ xn = y1 + y2 + ...+ yn and

xi
xj
≥ yi
yj
∀i < j, then

(x1, x2, ..., xn)� (y1, y2, ..., yn).

PROOF. To prove this assertion, we will use induction. Because
xi
x1
≤ yi
y1

for all i ∈

{1, 2, ..., n}, we get that

x1 + x2 + ...+ xn
x1

≤ y1 + y2 + ...+ yn
y1

⇒ x1 ≥ y1.

Consider two sequences (x1 + x2, x3, ..., xn) and (y1 + y2, y3, ..., yn). By the inductive
hypothesis, we get

(x1 + x2, x3, ..., xn)� (y1 + y2, y3, ..., yn).

Combining this with the result that x1 ≥ y1, we have the conclusion immediately.

∇

Theorem 7 (Symmetric Majorization Criterion). Suppose that (a) = (a1, a2, ..., an) and
(b) = (b1, b2, ..., bn) are two sequences of real numbers; then (a∗) � (b∗) if and only if for
all real numbers x we have

|a1 − x|+ |a2 − x|+ ...+ |an − x| ≥ |b1 − x|+ |b2 − x|+ ...+ |bn − x|.

PROOF. To prove this theorem, we need to prove the following.

(i). Necessary condition. Suppose that (a∗) � (b∗), then we need to prove that for
all real numbers x

|a1 − x|+ |a2 − x|+ ...+ |an − x| ≥ |b1 − x|+ |b2 − x|+ ...+ |bn − x| (?)

Notice that (?) is just a direct application of Karamata inequality to the convex func-
tion f(x) = |x− a|; however, we will prove algebraically.
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WLOG, assume that a1 ≥ a2 ≥ ... ≥ an and b1 ≥ b2 ≥ ... ≥ bn, then (a) � (b) by
hypothesis. Obviously, (?) is true if x ≥ b1 or x ≤ bn, because in these cases, we have

RHS = |b1 + b2 + ...+ bn − nx| = |a1 + a2 + ...+ an − nx| ≤ LHS.

Consider the case when there exists an integer k ∈ {1, 2, ..., n − 1} for which bk ≥
x ≥ bk+1. In this case, we can remove the absolute value signs of the right-hand
expression of (?)

|b1 − x|+ |b2 − x|+ ...+ |bk − x| = b1 + b2 + ...+ bk − kx ;

|bk+1 − x|+ |bk+2 − x|+ ...+ |bn − x| = (n− k)x− bk+1 − bk+2 − ...− bn ;

Moreover, we also have that

k∑
i=1

|ai − x| ≥ −kx+

k∑
i=1

ai,

and similarly,

n∑
i=k+1

|ai − x| =
n∑

i=k+1

|x− ai| ≥ (n− k)x−
n∑

i=k+1

ai.

Combining the two results and noticing that
k∑
i=1

ai ≥
k∑
i=1

ai and
n∑
i=1

ai =
n∑
i=1

bi, we get

n∑
i=1

|ai − x| ≥ (n− 2k)x+

k∑
i=1

ai −
n∑

i=k+1

ai

= 2

k∑
i=1

ai −
n∑
i=1

ai + (n− 2k)x ≥ 2

k∑
i=1

bi −
n∑
i=1

bi + (n− 2k)x =

n∑
i=1

|bi − x|.

This last inequality asserts our desired result.

(ii). Sufficient condition. Suppose that the inequality

|a1 − x|+ |a2 − x|+ ...+ |an − x| ≥ |b1 − x|+ |b2 − x|+ ...+ |bn − x| (??)

has been already true for every real number x. We have to prove that (a∗)� (b∗).

Without loss of generality, we may assume that a1 ≥ a2 ≥ ... ≥ an and b1 ≥ b2 ≥
... ≥ bn. Because (??) is true for all x ∈ R, if we choose x ≥ max{ai, bi}ni=1 then

n∑
i=1

|ai − x| = nx−
n∑
i=1

ai ;

n∑
i=1

|bi − x| = nx−
n∑
i=1

bi ;

⇒ a1 + a2 + ...+ an ≤ b1 + b2 + ...+ bn.
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Similarly, if we choose x ≤ min{ai, bi}ni=1, then

n∑
i=1

|ai − x| = −nx+

n∑
i=1

ai ;

n∑
i=1

|bi − x| = −nx+

n∑
i=1

bi ;

⇒ a1 + a2 + ...+ an ≥ b1 + b2 + ...+ bn.

From these results, we get that a1 + a2 + ... + an = b1 + b2 + ... + bn. Now suppose
that x is a real number in [ak, ak+1], then we need to prove that a1 + a2 + ... + ak ≥
b1 + b2 + ...+ bk. Indeed, we can eliminate the absolute value signs on the left-hand
expression of (??) as follows

|a1 − x|+ |a2 − x|+ ...+ |ak − x| = a1 + a2 + ...+ ak − kx ;

|ak+1 − x|+ |ak+2 − x|+ ...+ |an − x| = (n− k)x− ak+1 − ak+2 − ...− an ;

⇒
n∑
i=1

|ai − x| = (n− 2k)x+ 2

k∑
i=1

ai −
n∑
i=1

ai.

Considering the right-hand side expression of (??), we have

n∑
i=1

|bi − x| =
k∑
i=1

|bi − x|+
n∑

i=k+1

|x− bi|

≥ −kx+

k∑
i=1

bi + (n− k)x−
n∑

i=k+1

|bi| = (n− 2k)x+ 2

k∑
i=1

|bi| −
n∑
i=1

|bi|.

From these relations and (??), we conclude that

(n− 2k)x+ 2

k∑
i=1

ai −
n∑
i=1

ai ≥ (n− 2k)x+ 2

k∑
i=1

|bi| −
n∑
i=1

|bi|

⇒ a1 + a2 + ...+ ak ≥ b1 + b2 + ...+ bk,

which is exactly the desired result. The proof is completed.

∇

The Symmetric Majorization Criterion asserts that when we examine the ma-
jorization of two sequences, it’s enough to examine only one conditional inequal-
ity which includes a real variable x. This is important because if we use the normal
method, there may too many cases to check.

The essential importance of majorization lies in the Karamata inequality that
which will be discussed right now.
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1.17 Karamata Inequality

Karamata inequality is a strong application of convex functions to inequalities. As
shown in chapter I, the function f is called convex on I if and only if af(x) + bf(y) ≥
f(ax + by) for all x, y ∈ I and for all a, b ∈ [0, 1]. Moreover, we also have that f is
convex if f ′′(x) ≥ 0 ∀x ∈ I. In the following proof of Karamata inequality, we only
consider a convex function f when f ′′(x) ≥ 0 because this case mainly appears in
Mathematical Contests. This proof is also a nice application of Abel formula.

Theorem 8 (Karamata inequality). If (a) and (b) two numbers sequences for which
(a∗)� (b∗) and f is a convex function twice differentiable on I then

f(a1) + f(a2) + ...+ f(an) ≥ f(b1) + f(b2) + ...+ f(bn).

PROOF. WLOG, assume that a1 ≥ a2 ≥ ... ≥ an and b1 ≥ b2 ≥ ... ≥ bn. The inductive
hypothesis yields (a) = (a∗) � (b∗) = (b). Notice that f is a twice differentiable
function on I (that means f ′′(x) ≥ 0), so by Rolle’s theorem, we claim that

f(x)− f(y) ≥ (x− y)f ′(y) ∀x, y ∈ I.

From this result, we also have f(ai)−f(bi) ≥ (ai−bi)f ′(bi) ∀i ∈ {1, 2, ..., n}. Therefore

n∑
i=1

f(ai)−
n∑
i=1

f(bi) =

n∑
i=1

(f (ai)− f (bi)) ≥
n∑
i=1

(ai − bi)f ′(bi)

= (a1 − b1)(f ′(b1)− f ′(b2)) + (a1 + a2 − b1 − b2)(f ′(b2)− f ′(b3)) + ...+

+

(
n−1∑
i=1

ai −
n−1∑
i=1

bi

)
(f ′ (bn−1)− f ′ (bn)) +

(
n∑
i=1

ai −
n∑
i=1

bi

)
f ′(bn) ≥ 0

because for all k ∈ {1, 2, ..., n}we have f ′(bk) ≥ f ′(bk+1) and
k∑
i=1

ai ≥
k∑
i=1

bi.

Comment. 1. If f is a non-decreasing function, it is certain that the last condition
n∑
i=1

ai =
n∑
i=1

bi can be replaced by the stronger one
n∑
i=1

ai ≥
n∑
i=1

bi.

2. A similar result for concave functions is that

F If (a) � (b) are number arrays and f is a concave function twice differentiable
then

f(a1) + f(a2) + ...+ f(an) ≤ f(b1) + f(b2) + ...+ f(bn).

3. If f is convex (that means αf(a) + βf(b) ≥ f(αa + βb) ∀α, β ≥ 0, α + β = 1)
but not twice differentiable (f ′′(x) does not exist), Karamata inequality is still true.
A detailed proof can be seen in the book Inequalities written by G.H Hardy, J.E
Littewood and G.Polya.

∇



c© GIL Publishing House. All rights reserved. 363

The following examples should give you a sense of how this inequality can be
used.

Example 1.17.1. If f is a convex function then

f(a) + f(b) + f(c) + f

(
a+ b+ c

3

)
≥ 4

3

(
f

(
a+ b

2

)
+ f

(
b+ c

2

)
+ f

(
c+ a

2

))
.

(Popoviciu’s inequality)

SOLUTION. WLOG, suppose that a ≥ b ≥ c. Consider the following number se-
quences

(x) = (a, a, a, b, t, t, t, b, b, c, c, c) ; (y) = (α, α, α, α, β, β, β, β, γ, γ, γ, γ) ;

where
t =

a+ b+ c

3
, α =

a+ b

2
, β =

a+ c

2
, γ =

b+ c

2
.

Clearly, we have that (y) is a monotonic sequence. Moreover

a ≥ α, 3a+ b ≥ 4α, 3a+ b+ t ≥ 4α+ 2β, 3a+ b+ 3t ≥ 4α+ 3β,

3a+ 2b+ 3t ≥ 4α+ 4β, 3a+ 3b+ 3t ≥ 4α+ 4β + γ,

3a+ 3b+ 3t+ c ≥ 4α+ 4β + 2γ, 3a+ 3b+ 3t+ 3c ≥ 4α+ 4β + 4γ.

Thus (x∗)� (y) and therefore (x∗)� (y∗). By Karamata inequality, we conclude

3 (f(x) + f(y) + f(z) + f(t)) ≥ 4 (f(α) + f(β) + f(γ)) ,

which is exactly the desired result. We are done.

∇

Example 1.17.2 (Jensen Inequality). If f is a convex function then

f(a1) + f(a2) + ...+ f(an) ≥ nf
(
a1 + a2 + ...+ an

n

)
.

SOLUTION. We use property 1 of majorization. Suppose that a1 ≥ a2 ≥ ... ≥ an, then

we have (a1, a2, ..., an)� (a, a, ..., a) with a =
1

n
(a1 + a2 + ...+ an). Our problem is

directly deduced from Karamata inequality for these two sequences.

∇

Example 1.17.3. Let a, b, c, x, y, z be six real numbers in I satisfying

a+ b+ c = x+ y + z,max(a, b, c) ≥ max(x, y, z),min(a, b, c) ≤ min(x, y, z),

then for every convex function f on I, we have

f(a) + f(b) + f(c) ≥ f(x) + f(y) + f(z).
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SOLUTION. Assume that x ≥ y ≥ z. The assumption implies (a, b, c)∗ � (x, y, z) and
the conclusion follows from Karamata inequality.

∇

Example 1.17.4. Let a1, a2, ..., an be positive real numbers. Prove that

(1 + a1)(1 + a2)...(1 + an) ≤
(

1 +
a21
a2

)(
1 +

a22
a3

)
...

(
1 +

a2n
a1

)
.

SOLUTION. Our inequality is equivalent to

ln(1+a1)+ln(1+a2)+...+ln(1+an) ≤ ln

(
1 +

a21
a2

)
+ln

(
1 +

a22
a3

)
+...+ln

(
1 +

a2n
a1

)
.

Suppose that the number sequence (b) = (b1, b2, ..., bn) is a permutation of
(ln a1, ln a2, ..., ln an) which was rearranged in decreasing order. We may assume that
bi = ln aki , where (k1, k2, ..., kn) is a permutation of (1, 2, .., n). Therefore the number
sequence (c) = (2 ln a1− ln a2, 2 ln a2− ln a3, ..., 2 ln an− ln a1) can be rearranged into
a new one as

(c′) = (2 ln ak1 − ln ak1+1, 2 ln ak2 − ln ak2+1, ..., 2 ln akn − ln akn+1).

Because the number sequence (b) = (ln ak1 , ln ak2 , ..., ln akn) is decreasing, we must
have (c′)∗ � (b). By Karamata inequality, we conclude that for all convex function x
then

f(c1) + f(c2) + ...+ f(cn) ≥ f(b1) + f(b2) + ...+ f(bn),

where ci = 2 ln aki − ln aki+1 and bi = ln aki for all i ∈ {1, 2, ..., n}. Choosing f(x) =

ln(1 + ex), we have the desired result.

Comment. 1. A different choice of f(x) can make a different problem. For example,
with the convex function f(x) =

√
1 + ex, we get

√
1 + a1 +

√
1 + a2 + ...+

√
1 + an ≤

√
1 +

a21
a2

+

√
1 +

a22
a3

+ ...+

√
1 +

a2n
a1
.

2. By Cauchy-Schwarz inequality, we can solve this problem according to the fol-
lowing estimation (

1 +
a21
a2

)
(1 + a2) ≥ (1 + a1)2.

∇

Example 1.17.5. Let a1, a2, ..., an be positive real numbers. Prove that

a21
a22 + ...+ a2n

+ ...+
a2n

a21 + ...+ a2n−1
≥ a1
a2 + ...+ an

+ ...+
an

a1 + ...+ an−1
.
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SOLUTION. For each i ∈ {1, 2, ..., n}, we denote

yi =
ai

a1 + a2 + ...+ an
, xi =

a2i
a21 + a22 + ...+ a2n

then x1 + x2 + ...+ xn = y1 + y2 + ...+ yn = 1. We need to prove that
n∑
i=1

xi
1− xi

≥
n∑
i=1

yi
1− yi

.

WLOG, assume that a1 ≥ a2 ≥ ... ≥ an, then certainly x1 ≥ x2 ≥ ... ≥ xn and
y1 ≥ y2 ≥ ... ≥ yn. Moreover, for all i ≥ j, we also have

xi
xj

=
a2i
a2j
≥ ai
aj

=
yi
yj
.

By property 4, we deduce that (x1, x2, ..., xn)� (y1, y2, ..., yn). Furthermore,

f(x) =
x

1− x
is a convex function, so by Karamata inequality, the final result follows immediately.

∇

Example 1.17.6. Suppose that (a1, a2, ..., a2n) is a permutation of (b1, b2, ..., b2n) which
satisfies b1 ≥ b2 ≥ ... ≥ b2n ≥ 0. Prove that

(1 + a1a2)(1 + a3a4)...(1 + a2n−1a2n)

≤ (1 + b1b2)(1 + b3b4)...(1 + b2n−1b2n).

SOLUTION. Denote f(x) = ln(1 + ex) and xi = ln ai, yi = ln bi. We need to prove that

f(x1 + x2) + f(x3 + x4) + ...+ f(x2n−1 + x2n)

≤ f(y1 + y2) + f(y3 + y4) + ...+ f(y2n−1 + y2n).

Consider the number sequences (x) = (x1 + x2, x3 + x4, ..., x2n−1 + x2n) and (y) =

(y1+y2, y3+y4, ..., y2n−1+y2n). Because y1 ≥ y2 ≥ ... ≥ yn, if (x∗) = (x∗1, x
∗
2, ..., x

∗
n) is

a permutation of elements of (x) which are rearranged in the decreasing order, then

y1 + y2 + ...+ y2k ≥ x∗1 + x∗2 + ...+ x∗2k,

and therefore (y)� (x∗). The conclusion follows from Karamata inequality with the
convex function f(x) and two numbers sequences (y)� (x∗).

∇

If these examples are just the beginner’s applications of Karamata inequality, you
will see much more clearly how effective this theorem is in combination with the
Symmetric Majorization Criterion. Famous Turkevici’s inequality is such an instance.
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Example 1.17.7. Let a, b, c, d be non-negative real numbers. Prove that

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + b2c2 + c2d2 + d2a2 + a2c2 + b2d2.

(Turkevici’s inequality)

SOLUTION. To prove this problem, we use the following lemma

F For all real numbers x, y, z, t then

2(|x|+ |y|+ |z|+ |t|)+ |x+y+z+ t| ≥ |x+y|+ |y+z|+ |z+ t|+ |t+x|+ |x+z|+ |y+ t|.

We will not give a detailed proof of this lemma now (because the next problem shows
a nice generalization of this one, with a meticulous solution). At this time, we will
clarify that this lemma, in combination with Karamata inequality, can directly give
Turkevici’s inequality. Indeed, let a = ea1 , b = eb1 , c = ec1 and d = ed1 , our problem
is ∑

cyc

e4a1 + 2ea1+b1+c1+d1 ≥
∑
sym

e2a1+2b1 .

Because f(x) = ex is convex, it suffices to prove that (a∗) majorizes (b∗) with

(a) = (4a1, 4b1, 4c1, 4d1, a1 + b1 + c1 + d1, a1 + b1 + c1 + d1) ;

(b) = (2a1 + 2b1, 2b1 + 2c1, 2c1 + 2d1, 2d1 + 2a1, 2a1 + 2c1, 2b1 + 2d1) ;

By the symmetric majorization criterion, we need to prove that for all x1 ∈ R then

2|a1 + b1 + c1 + d1 − 4x1|+
∑
cyc

|4a1 − 4x1| ≥
∑
sym

|2a1 + 2b1 − 4x1|.

Letting now x = a1−x1, y = b1−x1, z = c1−x1, t = d1−x1, we obtain an equivalent
form as

2
∑
cyc

|x|+ |
∑
cyc

x| ≥
∑
sym

|x+ y|,

which is exactly the lemma shown above. We are done.

∇
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Example 1.17.8. Let a1, a2, ..., an be non-negative real numbers. Prove that

(n− 1)(a21 + a22 + ...+ a2n) + n n

√
a21a

2
2...a

2
n ≥ (a1 + a2 + ...+ an)2.

SOLUTION. We realize that Turkevici’s inequality is a particular case of this general
problem (for n = 4, it becomes Turkevici’s). By using the same reasoning as in the
preceding problem, we only need to prove that for all real numbers x1, x2, ..., xn then
(a∗)� (b∗) with

(a) = (2x1, 2x1, ..., 2x1︸ ︷︷ ︸
n−1

, 2x2, 2x2, ..., 2x2︸ ︷︷ ︸
n−1

, ..., 2xn, 2xn, ..., 2xn︸ ︷︷ ︸
n−1

, 2x, 2x, ..., 2x︸ ︷︷ ︸
n

) ;

(b) = (x1 + x1, x1 + x2, x1 + x3, ..., x1 + xn, x2 + x1, x2 + x2, ..., x2 + xn, ..., xn + xn) ;

and x =
1

n
(x1 + x2 + ...+ xn). By the Symmetric Majorization Criterion, it suffices to

prove that

(n− 2)

n∑
i=1

|xi|+ |
n∑
i=1

xi| ≥
n∑
i<j

|xi + xj |.

DenoteA = {i
∣∣ xi ≥ 0}, B = {i

∣∣ xi < 0} and suppose that |A| = m, |B| = k = n−m.
We will prove an equivalent form as follows: if xi ≥ 0 ∀i ∈ {1, 2, ..., n} then

(n− 2)
∑
i∈A,B

xi + |
∑
i∈A

xi −
∑
j∈B

xj | ≥
∑

(i,j)∈A,B

(xi + xj) +
∑

i∈A,j∈B
|xi − xj |.

Because k +m = n, we can rewrite the inequality above into

(k − 1)
∑
i∈A

xi + (m− 1)
∑
j∈B

xj + |
∑
i∈A

xi −
∑
j∈B

xj | ≥
∑

i∈A,j∈B
|xi − xj | (?)

Without loss of generality, we may assume that
∑
i∈A

xi ≥
∑
j∈B

xj . For each i ∈ A, let

|Ai| = {j ∈ B|xi ≤ xj} and ri = |Ai|. For each j ∈ B, let |Bj | = {i ∈ A|xj ≤ xi} and
sj = |Bj |. Thus the left-hand side expression in (?) can be rewritten as∑

i∈A
(k − 2ri)xi +

∑
j∈B

(m− 2sj)xj .

Therefore (?) becomes∑
i∈A

(2ri − 1)xi +
∑
j∈B

(2sj − 1)xj + |
∑
i∈A

xi −
∑
j∈B

xj | ≥ 0

⇔
∑
i∈A

rixi +
∑
j∈B

(sj − 1)xj ≥ 0.

Notice that if sj ≥ 1 for all j ∈ {1, 2, ..., n} then we have the desired result immedi-
ately. Otherwise, assume that there exists a number sl = 0, then

max
i∈A∪B

xi ∈ B ⇒ ri ≥ 1 ∀i ∈ {1, 2, ...,m}.
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Thus ∑
i∈A

rixi +
∑
j∈B

(sj − 1)xj ≥
∑
i∈A

xi −
∑
j∈B

xj ≥ 0.

This problem is completely solved. The equality holds for a1 = a2 = ... = an and
a1 = a2 = ... = an−1, an = 0 up to permutation.

∇

Example 1.17.9. Let a1, a2, ..., an be positive real numbers with product 1. Prove that

a1 + a2 + ...+ an + n(n− 2) ≥ (n− 1)

(
1

n−1
√
a1

+
1

n−1
√
a2

+ ...+
1

n−1
√
an

)
.

SOLUTION. The inequality can be rewritten in the form

n∑
i=1

ai + n(n− 1) n

√√√√ n∏
i=1

ai ≥ (n− 1)

n∑
i=1

n−1

√∏
j 6=i

aj .

First we will prove the following result (that helps us prove the previous inequality
immediately): if x1, x2, ..., xn are real numbers then (α∗)� (β∗) with

(α) = (x1, x2, ..., xn, x, x, ..., x) ;

(β) = (y1, y1, ..., y1, y2, y2, ..., y2, ..., yn, yn, ..., yn) ;

where x =
1

n
(x1 + x2 + ... + xn), (α) includes n(n − 2) numbers x, (β) includes

n − 1 numbers yk (∀k ∈ {1, 2, ..., n}), and each number bk is determined from bk =
nx− xi
n− 1

.

Indeed, by the symmetric majorization criterion, we only need to prove that

|x1|+ |x2|+ ...+ |xn|+ (n− 2)|S| ≥ |S − x1|+ |S − x2|+ ...+ |S − xn| (?)

where S = x1 + x2 + ...+ xn = nx. In case n = 3, this becomes a well-known result

|x|+ |y|+ |z|+ |x+ y + z| ≥ |x+ y|+ |y + z|+ |z + x|.

In the general case, assume that x1 ≥ x2 ≥ ... ≥ xn. If xi ≥ S ∀i ∈ {1, 2, ..., n} then

RHS =

n∑
i=1

(xi − S) = −(n− 1)S ≤ (n− 1)|S| ≤
n∑
i=1

|xi|+ (n− 2)|S| = LHS.

and the conclusion follows. Case xi ≤ S ∀i ∈ {1, 2, ..., n} is proved similarly. We
consider the final case. There exists an integer k (1 ≤ k ≤ n − 1) such that xk ≥ S ≥
xk+1. In this case, we can prove (?) simply as follows

RHS =

k∑
i=1

(xi − S) +

n∑
i=k+1

(S − xi) =

k∑
i=1

xi −
n∑

i=k+1

xk+1 + (n− 2k)S,
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≤
n∑
i=1

|xi|+ (n− 2k)|S| ≤
n∑
i=1

|xi|+ (n− 2)|S| = LHS,

which is also the desired result. The problem is completely solved.

∇

Example 1.17.10. Let a1, a2, ..., an be non-negative real numbers. Prove that

(n−1) (an1 + an2 + ...+ ann)+na1a2...an ≥ (a1+a2+...+an)
(
an−11 + an−12 + ...+ an−1n

)
.

(Suranji’s inequality)

SOLUTION. We will prove first the following result for all real numbers x1, x2, ..., xn

n(n− 1)

n∑
i=1

|xi|+ n|S| ≥
n∑

i,j=1

|xi + (n− 1)xj | (1)

in which S = x1 + x2 + ...+ xn. Indeed, let zi = |xi| ∀i ∈ {1, 2, ..., n} and A = {i
∣∣1 ≤

i ≤ n, i ∈ N, xi ≥ 0}, B = {i
∣∣1 ≤ i ≤ n, i ∈ N, xi < 0}. WLOG, we may assume that

A = {1, 2, ..., k} and B = {k + 1, k + 2, ..., n}, then |A| = k, |B| = n − k = m and
zi ≥ 0 for all i ∈ A ∪B. The inequality above becomes

n(n− 1)

∑
i∈A

zi +
∑
j∈B

zj

+ n

∣∣∣∣∣∣
∑
i∈A

zi −
∑
j∈B

zj

∣∣∣∣∣∣
≥
∑
i,i′∈A

|zi + (n− 1)zi′ |+
∑
j,j′∈B

|zj + zj′ |+
∑

i∈A,j∈B

(
|zi − (n− 1)zj |+ |(n− 1)zi − zj |

)
Because n = k +m, the previous inequality is equivalent to

n(m− 1)
∑
i∈A

zi + n(k − 1)
∑
j∈B

zj + n

∣∣∣∣∣∣
∑
i∈A

zi −
∑
j∈B

zj

∣∣∣∣∣∣
≥

∑
i∈A,j∈B

|zi − (n− 1)zj |+
∑

i∈A,j∈B
|(n− 1)zi − zj | (?)

For each i ∈ A we denote

Bi = { j ∈ B
∣∣(n− 1)zi ≥ zj } ; B′i = {j ∈ B

∣∣zi ≥ (n− 1)zj} ;

For each j ∈ B we denote

Aj = { i ∈ A
∣∣(n− 1)zj ≥ zi } ; A′j = {i ∈ A

∣∣zj ≥ (n− 1)zi} ;

We have of courseB′i ⊂ Bi ⊂ B andA′i ⊂ Ai ⊂ A. After giving up the absolute value
signs, the right-hand side expression of (?) is indeed equal to∑

i∈A
(mn− 2|B′i| − 2(n− 1)|Bi|) zi +

∑
j∈B

(
kn− 2|A′j | − 2(n− 1)|Aj |

)
zj .
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WLOG, we may assume that
∑
i∈A

zi ≥
∑
j∈B

zj . The inequality above becomes

∑
i∈A

(|B′i|+ (n− 1)|Bi|) zi +
∑
j∈B

(
|A′j |+ (n− 1)|Aj | − n

)
zj ≥ 0.

Notice that if for all j ∈ B, we have |A′j | ≥ 1, then the conclusion follows immedi-
ately (because A′j ⊂ Aj , then |Aj | ≥ 1 and |A′j | + (n − 1)|Aj | − n ≥ 0 ∀j ∈ B). If
not, we may assume that there exists a certain number r ∈ B for which |A′r| = 0, and
therefore |Ar| = 0. Because |Ar| = 0, it follows that (n − 1)zr ≤ zi for all i ∈ A. This
implies that |Bi| ≥ |B′i| ≥ 1 for all i ∈ A, therefore |B′i| + (n − 1)|Bi| ≥ n and we
conclude that∑
i∈A

(|B′i|+ (n− 1)|Bi|) zi +
∑
j∈B

(
|A′j |+ (n− 1)|Aj | − n

)
zj ≥ n

∑
i∈A

zi − n
∑
j∈B

zj ≥ 0.

Therefore (1) has been successfully proved and therefore Suranji’s inequality follows
immediately from Karamata inequality and the Symmetric Majorization Criterion.

∇

Example 1.17.11. Let a1, a2, ..., an be positive real numbers such that a1 ≥ a2 ≥ ... ≥ an.
Prove the following inequality

a1 + a2
2

· a2 + a3
2

· · · an + a1
2

≤ a1 + a2 + a3
3

· a2 + a3 + a4
3

· · · an + a1 + a2
3

.

(V. Adya Asuren)

SOLUTION. By using Karamata inequality for the concave function f(x) = lnx, we
only need to prove that the number sequence (x∗) majorizes the number sequence
(y∗) in which (x) = (x1, x2, ..., xn), (y) = (y1, y2, ..., yn) and for each i ∈ {1, 2, ..., n}

xi =
ai + ai+1

2
, yi =

ai + ai+1 + ai+2

3

(with the common notation an+1 = a1 and an+2 = a2). According to the Symmetric
Majorization Criterion, it suffices to prove the following inequality

3

(
n∑
i=1

|zi + zi+1|

)
≥ 2

(
n∑
i=1

|zi + zi+1 + zi+2|

)
(?)

for all real numbers z1 ≥ z2 ≥ ... ≥ zn and zn+1, zn+2 stand for z1, z2 respectively.

Notice that (∗) is obviously true if zi ≥ 0 for all i = 1, 2, ..., n. Otherwise, assume
that z1 ≥ z2 ≥ ... ≥ zk ≥ 0 > zk+1 ≥ ... ≥ zn. We realize first that it’s enough to
consider (?) for 8 numbers (instead of n numbers). Now consider it for 8 numbers
z1, z2, ..., z8. For each number i ∈ {1, 2, ..., 8}, we denote ci = |zi|, then ci ≥ 0. To
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prove this problem, we will prove first the most difficult case z1 ≥ z2 ≥ z3 ≥ z4 ≥
0 ≥ z5 ≥ z6 ≥ z7 ≥ z8. Giving up the absolute value signs, the problem becomes

3(c1 + 2c2 + 2c3 + c4 + c5 + 2c6 + 2c7 + c8 + |c4 − c5|+ |c8 − c1|)

≥ 2(c1+2c2+2c3+c4+|c3+c4−c5|+|c4−c5−c6|+c5+2c6+2c7+c8+|c7+c8−c1|+|c8−c1−c2|)

⇔ c1 + 2c2 + 2c3 + c4 + c5 + 2c6 + 2c7 + c8 + 3|c4 − c5|+ 3|c8 − c1|

≥ 2|c3 + c4 − c5|+ 2|c4 − c5 − c6|+ 2|c7 + c8 − c1|+ 2|c8 − c1 − c2|

Clearly, this inequality is obtained by adding the following results

2|c4 − c5|+ 2c3 ≥ 2|c3 + c4 + c5|

2|c8 − c1|+ 2c7 ≥ 2|c7 + c8 − c1|

|c4 − c5|+ c4 + c5 + 2c6 ≥ 2|c4 − c5 − c6|

|c8 − c1|+ c8 + c1 + 2c2 ≥ 2|c8 − c1 − c2|

For other cases when there exist exactly three (or five); two (or six); only one (or
seven) non-negative numbers in {z1, z2, ..., z8}, the problem is proved completely
similarly (indeed, notice that, for example, if z1 ≥ z2 ≥ z3 ≥ 0 ≥ z4 ≥ z5 ≥ z6 ≥
z7 ≥ z8 then we only need to consider the similar but simpler inequality of seven
numbers after eliminating z6). Therefore (?) is proved and the conclusion follows
immediately.

∇

Using Karamata inequality together with the theory of majorization like we have
just done it is an original method for algebraic inequalities. By this method, a purely
algebraic problem can be transformed to a linear inequality with absolute signs,
which is essentially an arithmetic problem, and which can have many original so-
lutions.


